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ABSTRACT

Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in meteorology,

especially for urban areas where routine weather observations are scarce. Previous studies showed that

smartphone battery temperature readings can be used to estimate the daily and citywide air temperature via a

direct heat transfer model. This work extends model estimates by studying smaller temporal and spatial scales.

The study finds the number of battery readings influences the accuracy of temperature retrievals. Optimal results

are achieved for 700 ormore retrievals. An extensive dataset of over 10million battery temperature readings for

estimating hourly and daily air temperatures is available for São Paulo, Brazil. The air temperature estimates are

validated with measurements from a WMO station, an Urban Flux Network site, and data from seven citizen

weather stations. Daily temperature estimates are good (coefficient of determination r2 of 86%), and the study

shows they improve by optimizing model parameters for neighborhood scales (,1 km2) as categorized in local

climate zones (LCZs). Temperature differences between LCZs can be distinguished from smartphone battery

temperatures. When validating the model for hourly temperature estimates, the model requires a diurnally

varying parameter function in the heat transfer model rather than one fixed value for the entire day. The results

show the potential of large crowdsourced datasets in meteorological studies, and the value of smartphones as a

measuring platform when routine observations are lacking.

1. Introduction

The need for high-resolution urban meteorological

measurements is ever increasing. Numerical weather

prediction models for cities are improving continu-

ously, which require more accurate measurements in

both time and space for data assimilation (Ronda et al.

2017). Ongoing and projected global urbanization

(United Nations 2012) makes a thorough un-

derstanding of the urban atmosphere vital for urban

planning, as well as for reliable forecasts of air quality,

energy demand, and heat stress. The urban heat island

(UHI)—that is, the difference in canopy air tempera-

ture between the rural background and the urban

core—has been widely studied (e.g., Oke 1982;

Arnfield 2003; Steeneveld et al. 2011; Heusinkveld

et al. 2014). Cities experience enhanced radiation up-

take during the day as a result of their lower albedo and

high heat storage capacity. Because of the slow noc-

turnal heat release from the urban fabric to the atmo-

sphere, cities cool down more slowly than their

surroundings, which creates the UHI. This may amount

to 8K on hot and calm summer days (Oke 1982). The

UHI effect can exacerbate the degree of heat stress

experienced by residents (Reid et al. 2009), which is

projected to increase as a result of the combination of

climate change and global urbanization (United

Nations 2012; Miralles et al. 2014). Moreover, Hajat

and Kosatky (2010) show that mortality increases with

2% per 18C increase in high temperature. Oleson et al.

(2015) and Molenaar et al. (2016) project a drastic in-

crease of future heat stress days caused by climate

change for the United States and Canada, and the

Netherlands, respectively. Both studies show that fu-

ture heat stress is amplified in urban areas, underlining

the need for knowledge of the temperature within the

urban fabric. To understand these developments, we

require urban temperature observations.Corresponding author: Arjan Droste, arjan.droste@wur.nl
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Traditional measurements in urban areas are scarce,

and are usually organized as intensive measurement

campaigns (Heusinkveld et al. 2014) or cover just a small

area (Kotthaus et al. 2012). This data scarcity can be

harmful for, for example, megacities in developing

countries, where knowledge on urban temperature is

crucial for mitigating urban heat and maintaining resi-

dents’ health. Part of this data scarcity can be overcome

by crowdsourcing: utilizing data that are routinely col-

lected by residents or public sensors, and transferred

over the Internet (Muller et al. 2015;Warren et al. 2016),

most notably by smartphones. Examples in the atmo-

spheric sciences include the Meteorological Phenomena

Identification Near the Ground (mPING) app, where

users can share information about precipitation (Elmore

et al. 2014); the Spectropolarimeter for Planetary Ex-

ploration (SPEX) for iPhone (iSPEX) smartphone add-

on, which allows users to measure optical thickness

(Snik et al. 2014); estimating rain employing microwave

links from cellular telecommunication networks

(Overeem et al. 2013a); mapping forest fires by using

voluntary observations sent by smartphones (Sosko and

Dalyot 2015); and using the built-in pressure sensor in

many smartphone models to improve surface pressure

forecasts (Mass and Madaus 2014). Also, crowdsourced

data from citizen weather stations uploaded to, for

example, Weather Underground (Wunderground) and

the Weather Observation Website (WOW) project

(MetOffice 2011) have proven to be valuable in urban

research (e.g., Steeneveld et al. 2011; Bell et al. 2013;

Warren et al. 2016;Meier et al. 2017).Using these stations

asks for strict control of the quality of station and data, in

terms of site setup,measurement accuracy, and data gaps.

A thorough overview of crowdsourcing projects in at-

mospheric sciences is given by Muller et al. (2015).

An innovative way of estimating urban air tempera-

tures from smartphones was presented by Overeem

et al. (2013b, henceforth O13). Using the OpenSignal

application, O13 employ 6-month datasets of smart-

phone battery temperature readings from eight cities

(including São Paulo, Brazil), with on average 844 se-

lected battery temperature readings per city per day

(1383 per day for São Paulo alone). They use a

straightforward heat transfer model between phone,

human body, and air temperature Tair (Fig. 1, left) to

translate the temperatures of smartphone batteries

into a daily averaged, city-averaged air temperature.

These daily temperature estimates (Test) are shown to

correspond well with measurements taken in the

respective cities.

This paper builds upon the study of O13. Here, we

employ a much longer (2 yr) and denser (12 3 103

readings per day) dataset for São Paulo. This study

explores the potential of the O13 heat transfer model at

refined spatial and temporal scales. The current mas-

sively extended availability of battery temperature

readings per day facilitates hourly air temperature esti-

mates that have not been possible in previous research.

We also investigate whether the model performance for

daily average temperatures improves when applied only

to selected neighborhoods with their characteristic

morphology, that is, the so-called local climate zones

(LCZs) (Stewart and Oke 2012). By using validation

data obtained from both certified sources (WMO; Ur-

ban Flux Network, http://ibis.geog.ubc.ca/urbanflux/

index.html) and crowdsourced weather stations (Wun-

derground and Netatmo), we provide a more robust

representation of the actual city temperature on both

daily and hourly time scales. Section 2 deals with the

background of the heat transfer model and the urban

heat island, data and methodology are discussed in

section 3, results are discussed in section 4, the discus-

sion follows in section 5, and we end with conclusions

and perspectives in section 6.

2. Background

a. Heat transfer model

O13 showed that smartphone battery temperatures

can be used to obtain a daily average urban Tair, using a

linear heat transfer model (Fig. 1, left). In the O13

model, the phone battery temperature Tp (8C) is regu-
lated by the environmental air temperature Te (8C), the
human body temperature Tb (8C), and the thermal en-

ergy generated by the phone Pp (W) [Eq. (S-2) in O13],
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where the coefficients kb and ke (W 8C21) are de-

termined by the thermal insulation between body and

phone, and between phone and environment, re-

spectively [Eq. (S-2) in O13]. Assuming independence

among values of Tp, ke, kb, Pp, and Tb over the set of

measurements, and equilibrium between Pp and the

heat flow to the body and environment, leads to

[Eq. (S-8) in O13]
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Here, mj is the average of (1 1 kb/ke) for a set of obser-

vations for city j, « is a random error, andT0 is interpreted

as the human body temperature [Tb in Eq. (1)], plus a

constant, under the assumption that the heat transfer

from a phone to the environment is approximately zero.

The O13 study found T0 5 398C for its eight cities
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and calibrates mj separately per city. Both constants are

calibrated over the entire dataset (i.e., a constant value for

bothmj and T0). Note that the heat transfer model initially

uses daily (and hourly later in this paper) and spatially

averaged battery temperatures, rather than instantaneous

battery readings. For the full derivation, we refer to the

supporting information of O13.

b. UHI and LCZs

TheUHI is usually defined as the difference in canopy

air temperatures between urban and rural sites. Urban

areas differ from their rural surroundings by the high

prevalence of impervious surface and buildings, and

little vegetation. Building materials have a high heat

capacity, storing radiative energy during the day for

subsequent slow nocturnal release. Additionally, the

low sky-view factor induces efficient heat trapping inside

the urban canopy (Oke 1982). These effects cause the

city to cool more slowly at night than the countryside,

where energy is released much faster by virtue of the

high sky-view factor and low heat capacity of vegetation.

This creates the UHI, which peaks a few hours after

sunset, when rural air temperatures have dropped and

urban air temperatures can still be high.

Defining the UHI can be highly subjective: a clear

definition of urban and rural is lacking (Stewart andOke

2012). Many UHI studies lack proper metadata, making

comparisons between cases difficult (Stewart 2011;

Stewart and Oke 2012). Defining the UHI as a temper-

ature difference between LCZs can increase objectivity.

The LCZ framework classifies land use into 10 urban

and 7 rural zones, each with its distinct surface proper-

ties (e.g., impervious fraction, vegetation cover) and

building properties (e.g., building height, aspect ratio).

TheUHI can thereby also be defined as the difference in

temperature between a rural and an urban LCZ, or even

between two urban LCZs. In this study we define the

UHI as a difference in canopy air temperature between

two urban LCZs (section 4b).

3. Data and methodology

a. Smartphone battery temperature data

The study region is São Paulo, which is located just

south of the Tropic of Capricorn, at roughly 23.55 8S,
46.63 8W, at 760m MSL. São Paulo is characterized

by a subtropical maritime climate with mild dry winters

and humid summers. The study area is confined

to a rectangle around the city center, between 23.478 and
23.80 8S, and 46.438 and 46.85 8W (Fig. 1, right).

The battery temperatures are obtained from the

OpenSignal app, a smartphone application that mea-

sures network signal strength from available providers.

This app also logs Tp from the temperature sensor

present in smartphone batteries. A Tp reading is taken

when 1) the phone is being plugged into or removed

from the power source and 2) when the phone is turned

on or off. The selection procedure in this study follows

that of O13. Only those readings made 1) at the time the

phone is being plugged into the power source or 2) when

the phone is turned on or off and the battery is dis-

charging are considered. To avoid spurious data in the

FIG. 1. (left) Conceptual diagram of the heat transfer model (from Overeem et al. 2013b). The Te,p,b is the

temperature of the environment (e), phone (p), and body (b); Pp represents the thermal energy produced by the

phone (or power); ke,b represents heat transfer rate between phone and environment (e) and body and phone (b).

(right) Readings of smartphone battery temperature (in 2013, after selections) taken in São Paulo. Symbols show

locations of the hobby meteorology stations (red circles), the FluxNet station (green circle), and WMO station

Congonhas (white circle). For the exact coordinates of the stations consult Table 1.
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analyses, an additional selection removes those battery

temperatures outside the range between 108 and 478C,
since these readings are likely to be erroneous (because

of, e.g., battery charging or intensive processor use),

as battery temperature values are typically around

308C (O13). The battery temperature dataset covers

1 January 2013 up to 31 December 2014. During this

period an average of 16 3 103 battery readings per day

are left after filtering, though this number is significantly

lower (’13 103 day21) at the start of 2013 and rises to as

much as 40 3 103 day21 for several months in 2014.

b. Weather station air temperature data

Three main sources of weather station Tair data are

employed for calibration and validation, that is, WMO

station Congon (WMO station 837800), the 17-m-tall ur-

ban FluxNet tower of theMicrometeorology Group of the

University of São Paulo (IAG-USP), and a set of seven

citizen weather stations. Congonhas is located at an air-

port, south of the city center, in the middle of a built-up

environment (see Table 1 for station metadata, including

classification into LCZs). TheWMO data fully cover 2013

and 2014, with very few hours missing (less than 3h per

month) and with 1.5-m Tair (8C) measured at the full hour,

available as rounded integers. The FluxNet Tair measure-

ments are taken every 5min and subsequently averaged

into hourly values around the hour, at 0.18C accuracy.

The data from the citizen stations are freely available for

download from the Netatmo and Wunderground plat-

forms (www.netatmo.com and www.wunderground.com,

respectively), where weather enthusiasts can share their

station data. First, we selected only stations with fewer

than 100 missing days per year. A day is considered as

missing if it contains less than 21h of data. Very few

stations meet these criteria in 2013 but seven stations

remain in 2014, one of which also has a sufficient record

length in 2013 (see Table 1). Measurement accuracy is

variable between brands of weather stations, since the

more expensive stations tend to measure at a higher

degree of accuracy, for example, as a result of better

radiation shielding and sensor quality (Bell et al. 2015).

Typically, the better citizen stations have temperature

measurement errors during daytime of around 0.58C
(Steeneveld et al. 2011; Bell et al. 2015).

Since the instrument placement and setup of these

citizen stations are not bound to strict rules, we have

applied a series of filters, to ensure quality, accounting

for the recommendations made by Stewart (2011). Data

entries with sudden large temperature jumps (.28C in-

crements between two consecutive hourly measure-

ments) that are not confirmed in either theWMO or the

FluxNet site data are removed. The temporal resolution

of the measurements varies between the stations but lies

mainly between 5- and 10-min intervals. For comparison

to the other stations, we have averaged the measure-

ments to an hourly mean temperature. Past studies (e.g.,

Steeneveld et al. 2011; Bell et al. 2013; Bell et al. 2015;

Meier et al. 2017) have demonstrated the value of these

citizen data to good effect.

c. Calibration and validation

To create independent calibration and validations sets,

data from 2013 are designated to the calibration set and

data from 2014 to the validation set. Both the WMO sta-

tion and the urban FluxNet station are fully active

throughout these years and are used for both calibration

and validation (Table 1). The majority of the citizen sta-

tions have only a sufficient number of measurement days

in 2014 and will therefore be used for validation purposes

only. Hence, the model is calibrated and validated against

the best possible representation of the average urban Tair,

rather than just one fixed station, in order to ensure the

most robust results. The original validationmethod inO13

may suffer from autocorrelation between calibration and

validation datasets, since the authors alternately assign

days to the calibration and validation sets. To avoid au-

tocorrelation problems, this study uses a statistically in-

dependent calibration and validation set, to ensure that

positive model outcomes are not artificial.

The number of selected battery readings for 2013

totals nearly 3 3 106 readings; the battery dataset for

2014 reaches on average 24 3 103 selected readings per

day for 8.8 3 106 readings in total. Battery readings are

averaged into hourly and daily values. Days with fewer

than 200 readings (i.e., six days in 2013, none in 2014) are

excluded from the analysis. For the hourly analysis, July

2013 and July 2014 are set as calibration and validation

datasets, respectively. All days in July 2013 and 2014

have more than 200 measurements per day.

The T0 parameter [Eq. (2)] has been determined by

O13 as an average over eight cities, rather than sepa-

rately for each city under its consideration. In this work,

theT0 parameter is optimized for São Paulo using a least
squares approach, based on the 1-yr calibration (2013)

dataset of battery readings (section 4a). The value ofmj

[Eq. (2)] is likewise determined, separately for the daily

and the hourly calibration datasets. Parameter T0 can be

interpreted as the approximate human body tempera-

ture, which is not expected to fluctuate, whereas mj

represents a ratio of insulation coefficients. Factors

influencing insulation (such as clothing) will be more

variable over time. Therefore,mj is calibrated separately

for the analysis of hourly temperatures, resulting in two

calibration datasets—one for the daily dataset and

one for the hourly dataset—which are used to train

the model.
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Since the dataset used for analysis is extensive, we can

determine the minimum number of battery readings N

needed for a stable model result. Employing random

sampling (in space and time), N measurements are se-

lected for every day and averaged into one daily value.

This procedure is repeated 100 times per chosen value of

N to capture themean battery temperature as accurately

as possible, so every day has 100 mean battery temper-

atures. Each of these temperatures is validated against

the city average air temperature (section 4a).

d. Daily air temperature modeling for a single
neighborhood

A point of interest is the role of the environment on the

Tp reading. An analysis of model performance as function

of the distance between battery reading and validation

station yielded no significant relation (not shown). Instead,

we study the influence of the urban fabric on the envi-

ronment, as measured by battery temperatures. Muller

et al. (2015) write that ‘‘the utility of smartphones for

higher resolution UHI analysis . . . is still to be explored.’’

To this end we utilize the LCZ classification for São Paulo,
which was constructed using a GIS algorithm (Mills et al.

2015) and is freely available. The location of each battery

reading is coupled to the corresponding location on the

LCZ map (Fig. 2); the battery readings are subsequently

grouped by LCZ and are used to validate the heat transfer

model per LCZ. São Paulo mainly consists of low-rise

buildings: LCZ3 in the center (compact low-rise

buildings), a wide spread of LCZ6 (open low-rise build-

ings) closer to the city border, and several clusters of LCZ8

(large low-rise buildings) (Fig. 2).

e. Hourly air temperature estimation

For determining hourly Test, we use July 2013 as cal-

ibration data and July 2014 as validation data. Model

parameter mj is calibrated to the diurnal temperature

course in July. Term T0 is set at the optimal value for the

entire year, determined using the methods described in

section 3c. For this analysis, July is the preferred month

because of high data availability, and because July is one

of the driest and cooler months, limiting possible effects

of data distortion as a result of weather conditions (e.g.,

more people staying inside during precipitation events).

Additional data selections, such as selections on LCZs

and smartphone series, are not feasible with the hourly

averaged data because of the strong reduction in avail-

able measurements, especially during nighttime.

Figure 3 shows the availability of smartphone readings

against time of day (UTC). Around 0800 UTC (0500 LT)

the number of measurements is at its minimum, at

less than 10% of the daytime data density. Removing

these data will strongly reduce the applicability of the
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dataset; however, excluding the nighttime hours will

lead to an unreliable calibration of mj and to missing

hours in the resulting validation. In addition, we will

explore the effect of using 24 hourly mj constants, to

better capture Tair variation. By this methodology the

average diurnal variability of human behavior (different

clothing, being inside/outside, etc.) in July will be ac-

counted for through mj.

4. Results

a. Estimation of daily air temperatures

Figure 4 shows a validation of time series of daily Test

against observed average city Tair, computed as the av-

erage of the various temperature measurements avail-

able (WMO, FluxNet, and the citizen weather stations).

In general Test compares very well with the observed air

temperature, as was also concluded byO13. The analysis

uses optimized values of mj and T0: optimizing T0 for

São Paulo only slightly changes its value in comparison

to the standard value in O13 (from 398 to 39.88C). The
coefficient of determination r2 is 0.87, with a mean

error (ME; or bias) of 20.538C. This bias is largest in

January and February 2014. The quantity Test is con-

sistently up to 28C lower than the actual measured

temperature. We hypothesize that this is related to the

number of battery measurements available in the cali-

bration data. The number of measurements per day in

the period January–May is roughly 12 times lower than

in the rest of the year (’1 3 103 vs ’12 3 103). This

could affect the calibration, since the months with the

highest temperature peaks are underrepresented in the

FIG. 2. LCZ in the research area (São Paulo) at a resolution of 120m2. The city is mainly made up of: LCZ3,

compact low-rise buildings (22%); LCZ6, open low-rise buildings (15%); andLCZ8, large low-rise buildings (14%).

[Image and legend are obtained fromGeopedia, theWorld Urban Database and Access Portal Tools (WUDAPT)

for visualizing LCZ data (http://geopedia.world/).]

FIG. 3. Number of available battery readings after selection in

July 2013 (circles) and July 2014 (squares) per hour as function of

time of day. São Paulo is in time zone UTC 2 3 h (summertime).
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model calibration (fewer measurements are available).

The model seems to perform well for temperatures in

the middle of the range; however, for temperatures

close to the upper and lower limits, the model response

underestimates the amplitude.When solelyWMO data

are used for calibration, the results deteriorate as a

result of the coarser resolution (18C) of theWMO data.

Interestingly, calibrating mj for separate seasons does

not improve the performance (not shown), which in-

dicates that variability in the (daily averaged) heat

transfer is not very strong over the year. Though São
Paulo experiences seasonal variation in temperature,

daily average temperature variability is smaller than,

for instance, that of continental climates.

Figure 5 shows the model performance (r2 and

RMSE) as a function of N used per day. It appears that

above ’700 measurements, the performance quality

converges to a constant value. Apparently adding more

data does not raise the quality beyond a certain

threshold, but rather opens up more options for detailed

analyses. This justifies stratifying the large dataset at our

disposal into subsets for individual LCZs and even into

hourly time intervals. The number of measurements left

in these selections should still produce reliable results.

FIG. 4. Average daily air temperature in São Paulo during 2014 from Test (blue line)

validated against city average (WMO, FluxNet, and hobby stations) air temperature obser-

vations (black line) and daily averaged battery temperatures used as input (orange line).

FIG. 5. Relation of the meanN used per day (horizontal axis) against model performance: (a) r2 and (b) RMSE.

Average of 100 random samples ofN readings (large black dots) and the 100 samples (small black dots) to indicate

the spread. Calibration of the data is performed on the entire dataset, using FluxNet as an air temperature ref-

erence. Validation is done against the average city air temperature (all stations combined).
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b. Daily temperature estimates per LCZ

The next step is to explore the model potential for the

selected LCZ data, and whether spatial temperature

differences can be identified and quantified by the

smartphones. Whereas the city surface cover is mainly

LCZ3 and LCZ6 (Fig. 2), a disproportionally large

number of measurements (19%) originate from LCZ1

(3% of surface cover): a compact high-rise building,

which is typically found in the city center (Fig. 6).

Datasets of battery readings from the LCZs with the

most measurements (LCZ1, LCZ3, LCZ6, LCZ8) are

used as model input. The resulting Test values for these

LCZs are compared to each other to study whether the

urban fabric discernibly influences Test. A daily average

UHI per LCZ is calculated by subtracting the resulting

temperatures from the daily averaged background

temperature, taken from the WMO station. Note that

this station is surrounded by a built-up area and cannot

be considered as an ideal rural station, though Tair

differences between LCZs will still be visible using

this approach. From this analysis a daily mean UHI

of ;0.9K arises for LCZ8 and ;0.3K for LCZ3

(Fig. 7a). Standard error in the mean for all LCZs

is ’0.098C. Using LCZ-specific battery temperatures

does not strongly affect the model output: that is, only

the sign of the ME changes for LCZ8 (from 20.488 to
0.378C; Figs. 7b and 7c). Where the original model out-

put underestimated the urban Tair, for LCZ8 the bias is

positive, suggesting higher model temperatures as is

indeed seen in the large positive UHI (Fig. 7a). For

LCZ3 the bias as compared to the full set remains neg-

ative but decreases (to 20.278C). Since the statistical

distribution of the data is unknown, the significance of

the UHI effect in these two LCZs is investigated using

the nonparametric Kruskal–Wallis test for two in-

dependent samples. Test results (not shown here) con-

firm that the UHI magnitude between LCZs is

significantly different. Hence, there is a discernable

difference in Test between these LCZs, which shows that

the UHI can indeed be observed with this method.

c. Estimation of hourly air temperatures

Next, we explore whether the method can also cor-

rectly estimate hourly averaged temperatures, despite

the significantly reduced number of measurements

available (Fig. 3). The hourlyTest shows a relatively poor

result (r2 of 0.35) with a large spread (RMSE of 3.28C)
and anME of roughly 0.98C (Fig. 8a). It appears that the

model results are delayed compared to the reference

measurements (Fig. 8a); that is, the maximum Test oc-

curs several hours after the measured maximum tem-

perature. Furthermore, the cooling rate in the evening is

more rapid in the measured temperature, whereas Test

lags behind, cooling later and more slowly. This may be

due to the heat capacity of the system (the phone itself,

and the insulating layers between phone and air, and

phone and body), causing a delay in response. To ex-

plore whether results might improve, a delay is in-

troduced to Eq. (2):

T
est
(t)5m

j
[T

p
(t1H)2T

0
]1T

0
. (3)

Here T(t) is the temperature (8C) at hour t (hours UTC)

and H is the delay in whole hours (H 5 1, 2, . . . , h).

Residual analysis of hourly Test against the city average

air temperature yields the best match between smart-

phone estimates and temperature measurements at

H5 4 h. The r2 doubles (from 0.36 to 0.72), and the large

MAE and RMSE are reduced with over 18C each, to

1.638 and 1.998C, respectively (Fig. 8b). While the

magnitude of the peaks (positive and negative) is still

much larger than the measurements indicate, the timing

of the estimated temperatures now corresponds much

better to the observations. Analysis of the daily peaks in

temperature reveals that on average the delay during the

day is roughly 2h between model and observations,

whereas at night the delay can be longer, on average up

to 3 or 4h.

In search of a physical explanation for the delay, we

formulate a simplified differential equation for the

change in temperature of the phone as caused by the

differences between the phone temperature, and the air

and body temperatures:
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Here m is the mass of the phone, taken as 0.13 kg, and c

is the specific heat of the phone, taken as 600 J kg21K21

(based on specific heat of glass and sand, for simplicity).

FIG. 6. Histogram of the distribution of battery temperature

readings in 2013 over the urban LCZs in São Paulo. Fraction is

calculated over the total of the 17 LCZs; the 7 rural LCZs (A–G)

have not been plotted; and the LCZ corresponding to each number

is explained in Fig. 2.
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The supporting information of O13 indicates that k is

the conductivity multiplied by the surface area divided

by the insulating material thickness. We take the typical

dimensions of the phone as 10 cm 3 4 cm, and the con-

ductivity of the clothing layer between phone and body

as 0.037Km2W21 (resembling a pair of pants;

ASHRAE 2010). Furthermore, in our results mj 5 (11
kb/ke) ’ 2, so kb ’ke 5 0.11WK21. Using these typical

values,Tb at 378C and a linear cooling of the atmosphere

with ’1Kh21, we can simulate the phone’s cooling

(heating) rate. This simple analysis indicates the phone

arrives at a steady cooling rate after ’(1–2) h, depend-

ing on the exact initial values ofTair2Tp and the specific

heat and mass. The data seem to suggest a larger delay

time (up to 4 h): in reality, the heat capacity of the phone

will be larger than assumed, by including the heat ca-

pacity of the bag or clothes in which it is being carried.

The inside Tair for those readings taken indoors will

influence the calibration: inside Tair reacts to outside Tair,

with a lower amplitude and another delay factor, thus in-

creasing the response time of the total smartphone system.

A second, implicit way to correct for the delay is by

using 24 hourly mj values, rather than a single fixed mj,

for the entire dataset. By determining one mj value per

hour, the variations in heat transfer efficiency over the

day are taken into account, since mj is the ratio of the

thermal insulation k values [Eq. (2)]. Possible variations

in human behavior (e.g., clothing) and the available

measurements per hour can also be implicitly accounted

for with this method. According to theory, the heat flow

between phone and environment should decrease when

the difference in temperature decreases. One would

expect this to happen during the day when air temper-

ature is relatively high and therefore closer to the

smartphone battery temperature (’308C). At night, the

temperature difference is larger and the rate of heat

FIG. 7. (a) UHI (K) derived from Test per LCZ, using Congonhas as reference background station. The mean

standard errors (whiskers) are shown. Scatterplots of observations (horizontal axis) againstTest (vertical axis) of the

full (b) dataset (Fig. 4) and (c) LCZ8. The 1:1 lines indicate where measurements would equal model results

(straight black lines).
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exchange would increase. When implementing an

hourly variation of mj, the results (not shown) are very

similar to the results for the delay-corrected series

(Fig. 8b). There are no appreciable differences between

the two sets (i.e., hourly mj vs delay corrected), in-

dicating that mj implicitly corrects for the delay in the

battery response. Values formj vary between 1.4 and 2.2

throughout the day, with the higher values occurring

during nighttime. A high value indicates ke increases or

that kb decreases. A higher ke indicates a larger tem-

perature difference between phone and environment

(O13), as does indeed occur during the night (if the

reading takes place outdoors).

The compensating effect of mj on the delay in the

battery temperature (Fig. 8b) is confirmed when cali-

brating hourlymj values to the explicitly delay-corrected

set [Eq. (3)]. When calibrating hourly mj values to this

explicitly corrected set, the range of mj is halved

(ranging between 1.7 and 2.1), though the diurnal pat-

tern (lowermj during the day) persists: no constantmj is

obtained for the delay-corrected set. Results do not

notably improve: a 0.088C reduction in the MAE, while

r2 and RMSE remain equal in comparison to the hourly

mj calibration on the uncorrected dataset. This means

that the observed delay in the smartphone battery esti-

mates can be corrected for by either explicitly accounting

for the delay [as in Eq. (3)] or taking 24 hourlymj values

rather than a single fixed value for the entire day.

5. Discussion

a. Relation to other studies

Our study extends O13 by employing a more extensive

dataset for just one city, and using independent calibration

and validation datasets. The São Paulo results of O13 show

nearly the same r2 based on two periods of 3 months (r2 of

0.65 and 0.85 for winter and spring 2012, respectively), as

our results provide a r2 of 0.86. The mean absolute error

(MAE) for SãoPaulo inO13 is only slightly higher than our

values (1.28C in O13 and’1.18C here). This indicates that

even with a smaller dataset (O13 used on average 1383

measurements per day for São Paulo, whereas this study

has roughly 10 timesmore), the daily averaged temperature

on a citywide scale can be captured well. Though our study

has only focused on one city, theO13 study was carried out

for eight different cities in vastly different climate zones

with different temperature seasonality and extremes. The

FIG. 8. (left) Average hourly air temperature of São Paulo during July 2014 estimated from smartphone battery

temperature readings (blue line) validated against city average air temperature observations (black line), and

(right) scatterplots of observations (horizontal axis) against Test (vertical axis); the 1:1 lines indicate where

measurements would equal model results (straight black lines). (top) Results of the validation without a delay

correction in the smartphone data and (bottom) with a delay-corrected dataset with delay H 5 4 h.
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sound results of O13 indicate that the method is valid

across a wide variation of climates, rather than only for

São Paulo. The specific calibration constants of this work

are optimized for São Paulo and are statistically not valid

for any other city. However, this is not a fundamental

limitation of the proposed method, since for other regions

the model can be recalibrated using region-specific data.

Considering the data availability, we find that results

deteriorate below a minimum number of battery mea-

surements, even on the daily scale. As an illustration,

Overeem et al. (2014) have applied the same method to

Rotterdam and Amsterdam, the Netherlands; however,

their model statistics are less satisfactory (r2 of 0.77 and

0.67, respectively; MAE of 1.228 and 1.408C, respectively).
The daily data availability was much lower for these

comparatively small cities (382 and 116 per day for

Rotterdam and Amsterdam, respectively). Similarly,

with 203 readings per day Muller et al. (2015) report an

even lower r2 of 0.52, and a higher MAE of 1.718C for

Birmingham, United Kingdom. Overeem et al. (2014)

provide a relation between the data availability and

model r2, showing that the results become inaccurate

for ,100 measurements per day. Also, .350 daily

measurements are preferable for accurate results: the

optimal number of measurements is 7001 (Fig. 5). O13

fulfills this requirement, but the data availability re-

ported in Overeem et al. (2014) and Muller et al. (2015)

lies below this threshold. Note that the r2 found by

Muller et al. (2015) is lower than the lowest r2 in Fig. 5.

In our study 123 103 battery readings are available on

average per day (section 3a), and the r2 value is 0.87 for

the daily analysis (section 4a; Fig. 4), which clearly il-

lustrates the necessity of having enough data. Overall,

our results tend to be of equal or better skill compared to

earlier studies with the same heat transfer model. The

high data availability provides possibilities for studying

the method at an hourly scale or for making selections

for separate city areas (LCZs).

b. Data quality and additional filtering

Anotable issue is the uncertainty in the location of the

smartphone, which is often in the order of tens ofmeters.

This may introduce an uncertainty in coupling a battery

reading to a location in the LCZ map (Fig. 2). However,

this map is based on satellite imagery with a resolution

of 120m2; the uncertainty in smartphone location should

fall within this range. In addition, the phone’s GPS

tracking is not always turned on (O13), so it remains

difficult to discern between indoor and outdoor read-

ings. However, the applied data selection (see O13;

section 3a) aims to minimize the uncertainty. In addi-

tion, the calibration process will account for this effect as

well if relevant. Importantly, the apparent time lag

between temperature changes in phone and environ-

ment (section 4c) suggests that readings taken inside

may still have been affected by the outdoor

temperature.

Moreover, our approach assumes the phone is carried

in a pocket, which allows for an assumed equilibrium

exchange of heat between body and phone. In practice

this assumption may be violated, for example, because

the phone is carried in a bag or elsewhere, and on an

hourly scale the system may not be in equilibrium.

However, calibratedmj values appeared to be close to a

priori estimated mj values from clothing properties

(O13), which supports confidence in the followed ap-

proach. Additionally, we assume mj to be constant over

time, whereas clothing thickness (insulation) will obvi-

ously undergo a diurnal and seasonal cycle. Possibly,

using the light sensor that many smartphone brands now

possess, a distinction can be made between indoor and

outdoor measurements, if these data are available.

A follow-up study that improves the heat transfer model

by reducing the assumptions made could be very valu-

able for further research with these data. The weather

can also influence human behavior. On very hot days or

days with extreme precipitation, people are more likely

to stay indoors, meaning that readings taken during

those periods will not reflect the outside air tempera-

ture, but rather the indoor environment. For instance, in

May 2014 several hail events occurred in São Paulo,

during which the error between Test and the observa-

tions was relatively high (up to 38C on 19 May) com-

pared to clear days. A sensitivity test where all days with

rainfall higher than 0mm were excluded (leaving 238

dry days for calibration and 254 for validation) did not

significantly improve model results enough to justify

losing several weeks of data completely in the rainy

months. Less strict filters (1, 2, and 5mm) made the re-

sults nearly identical to the results without any filtering

for precipitation amount. Therefore, we decided not to

pursue this sensitivity aspect any further. These issues

are an inherent drawback of using smartphones for air

temperature data, but by averaging a large amount of

battery data in space (on the scale of a city or a LCZ)

and in time (daily or hourly), the errors will be filtered

out to a certain extent, as can be concluded from

the results of this study. For a thorough analysis of the

reaction of the smartphone battery to changes in air

temperature over the course of the day, a controlled trial

should be set up with a conventional temperature sensor

and several smartphones logging battery temperature.

Because of several limitations (such as an inability to do

continuous battery logging), we could not perform

such a trial, but we strongly recommend it for any future

research.
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Two additional analyses did not yield any improve-

ment: an attempt was made to use only smartphones

with similar hardware (Samsung GTI series), which in

theory will have similar k coefficients, similar heat ca-

pacities, similar battery temperature sensors, and a

similar thermal energy generated by the battery (P).

However, this was no improvement over using all the

smartphone data available. Additionally, we con-

structed an extra filter of the raw battery temperatures

by Gaussian mixture modeling (Reynolds 2009). This

statistical technique assumes that the dataset consists of

several sub-distributions or data clusters, each with its

own mean and standard deviation. A data cluster that is,

for example, characterized by high temperatures could

be influenced by the battery charging or extensive use of

the phone. These faulty data could be filtered out to

improve results. However, the resulting data clusters of

the mixture modeling had mean temperature differ-

ences smaller than 18C with standard deviations around

68C, which hampers distinguishing of clusters.

c. T0 calibration

Initially, results with the optimized T0 (section 4a)

were worse than the results using the reference T0 from

O13. The T0 was found to be as high as 498C, and the

MAE of the validation results increased significantly (by

’0.38C compared to the set using T05 398C). This large
T0 value cannot be realistically interpreted as the ap-

proximate body temperature, which is ideally near 378C,
plus a constant [Eq. (S-9) in O13]. A more physically

sound value for T0 (39.88C, used in the analyses) was

obtained from repeating the optimization procedure for

incrementally increasing random samples of battery

temperature used for calibration. For an increasing

number N of measurements, the T0 and RMSE values

decrease untilN5 33 103. Beyond this pointT0 remains

constant at 39.88C and RMSE does not appreciably de-

crease any more (value ’ 1.498C).

d. Weather station measurement data

With three different sources of measurement data,

each with its own measurement accuracy, resolution,

and location (footprint), it is nearly impossible to know

which station represents ‘‘the truth.’’ What the ‘‘true’’

city temperature is remains a matter of definition. Since

the city is heterogeneous, the temperature is in-

creasingly influenced by local characteristics when

moving from the boundary layer top to the surface layer

(Barlow 2014).What is measured using the smartphones

is the urban canyon temperature, influenced by the local

microclimate. Using a city-averaged Tair constructed

from all these measurements seems to be the most ro-

bust option, to represent the urban air temperature as

accurately as possible. However, this approach will not

always yield the best model statistics. Particularly with

the LCZ analysis, calibration and validation of the sep-

arate LCZs would ideally be performed with a station

located in the same LCZ. Calibration of the model using

specific LCZ air temperature data would make it better

suited to detect differences in smartphone response

between LCZs. The number of suitable hobby stations

for use was scarce, however. For a city with more sta-

tions to choose from, a more thorough selection pro-

cedure (based on, e.g., measurement height, metadata,

or neighborhood) could be performed according to the

principles in Stewart (2011) and Bell et al. (2015). This

might also reduce the high uncertainty at night, which

can among others be caused by the high variability in

measured minimum temperature (Brandsma and van

der Meulen 2008), in combination with the low number

of battery readings available during those hours. For

estimating the absolute value of the UHI with

smartphones, a robust rural background station is es-

sential, but one was unavailable in this study.

e. Applicability

Though this article primarily functions as a proof of

principle, smartphone-derived air temperatures can

have various applications to complement conventional

data. For instance, in developing countries, where

weather stations are scarce but smartphone ownership is

high, smartphones can add valuable information about

the urban temperature. This knowledge can be vital

during, for instance, heat waves, where knowledge of

which neighborhoods are most prone to the UHI can

potentially save lives. Additionally, whereas a tradi-

tional urban measurement network is very expensive to

set up and maintain, and will be prone to vandalism, a

smartphone network will not be hindered by these lim-

itations, providing valuable data virtually for free. This

will be particularly valuable for those cities for which

funds for urban research are limited.

Alternatively, data assimilation in NWP models can

be beneficial for NWP in the near future, since model

resolution is steadily increasing to an extent that the

influence of cities will be felt (ECMWF 2016). An urban

scheme is often lacking within these NWP models, so

data assimilation of the urban meteorological data will

be crucial for reliable forecasts. Given the scarcity of

urban data, even relatively coarse data such as the

smartphone-derived temperatures could make a con-

tribution to the forecasts. In broader terms, the de-

velopedmethodology of this studymay also be useful for

algorithms that are being developed for application

to other types of crowdsourced data. A preliminary test

in which smartphone-based temperature data were
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assimilated within theWRFmodeling system for São Paulo
revealed that maximum temperatures were forecasted by

about 0.5–1K better for the studied week (not shown).

6. Conclusions

This study utilizes a heat transfer model to translate

smartphone battery temperature readings into citywide

air temperatures, on both a daily and an hourly scale.

This work extends the earlier research byOvereem et al.

(2013b) by using an extensive dataset spanning 2 yr of

over 10 million battery readings taken in São Paulo,

Brazil. We use multiple measurement stations spread

across the city for calibration, thereby better capturing

the average urban air temperature than using a single

WMO station. The extensive data availability allows

for a division of the dataset per local climate zone (LCZ)

to investigate spatial differences in temperature, as well

as zooming in to the hourly temperature variations as

captured by the smartphones. The consistent division

into a separate calibration (the year 2013) and validation

period (the year 2014) for both daily and hourly tem-

peratures ensures that all results are statistically robust,

and not subject to autocorrelation.

Estimated daily averaged air temperatures are good

and can even be used to calculate temperatures of spe-

cific LCZs. A daily averagedUHI can be found in LCZ8

(large low-rise buildings) and LCZ3 (compact low-rise

buildings): these LCZs have a significant difference in

temperature in comparison to the official WMO airport

station. However, insufficient battery temperature data

are available to estimate hourly UHI. This would also

need a proper rural background station: the airport is

fully surrounded by a built-up area (LCZ3).

On the hourly scale, initial results for temperature

were poor but were vastly improved after correcting

for a seemingly delayed response of the battery tem-

peratures to changes in air temperatures. An analogous

improvement can be obtained by using 24 hourly cali-

bration (mj) constants rather than one average value for

all hours. The incorrect magnitude of especially the

nighttime lows remains an unsolved issue, possibly as a

result of the low number of battery temperature read-

ings taken at night. A larger set of battery temperatures,

especially when taken at night, is required to reduce the

nighttime underestimation. Making use of an urban test

bed like Rotterdam (Heusinkveld et al. 2014) or Bir-

mingham (Muller et al. 2015; Warren et al. 2016), could

aid with this issue.

From a large number of smartphone readings an ac-

curate air temperature estimate for the daily and even

hourly scale of a city can be obtained, which underlines

the strength of crowdsourced data. With newer

smartphone models regularly carrying temperature,

moisture, or pressure sensors, as well as applications such

as mPing and WeatherSignal, there is no denying that

measurements from smartphones may hold a lot of po-

tential for future (urban) meteorological studies given

their interconnectivity and everyday use in great numbers.
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