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Abstract
The use of crowdsourcing – obtaining large quantities of data through the Inter-
net – has been of great value in urban meteorology. Crowdsourcing has been
used to obtain urban air temperature, air pressure, and precipitation data from
sources such as mobile phones or personal weather stations (PWSs), but so far
wind data have not been researched. Urban wind behaviour is highly variable
and challenging to measure, since observations strongly depend on the location
and instrumental set-up. Crowdsourcing can provide a dense network of wind
observations and may give insight into the spatial pattern of urban wind. In this
study, we evaluate the skill of the popular “Netatmo” PWS anemometer against a
reference for a rural and an urban site. Subsequently, we use crowdsourced wind
speed observations from 60 PWSs in Amsterdam, the Netherlands, to analyse
wind speed distributions of different Local Climate Zones (LCZs). The Netatmo
PWS anemometer appears to systematically underestimate the wind speed, and
episodes with rain or high relative humidity degrade the measurement quality.
Therefore, we developed a quality assurance (QA) protocol to correct PWS mea-
surements for these errors. The applied QA protocol strongly improves PWS data
to a point where they can be used to infer the probability density distribution
of wind speed of a city or neighbourhood. This density distribution consists of a
combination of two Weibull distributions, rather than the typical single Weibull
distribution used for rural wind speed observations. The limited capability of the
Netatmo PWS anemometer to measure near-zero wind speed causes the QA pro-
tocol to perform poorly for periods with very low wind speeds. However, results
for a year-long wind speed climatology of the wind speed are satisfactory, as well
as for a shorter period with higher wind speeds.
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1 INTRODUCTION

The urban climate is a subject of increasing interest in sci-
ence and society. With ongoing climate change and urban-
isation, the need for accurate urban weather information
has never been more urgent. In order to combat the effects
of heat waves, air pollution or urban flooding, knowl-
edge of urban weather can assist in identifying risk prone
areas, to which urban planners can find a solution. The
urban climate is of particular importance to human ther-
mal comfort and air quality, and their associated health
risks (Moonen et al., 2012).

The lack of urban weather observations is a major chal-
lenge in characterising the urban climate. Several cities
have dedicated observational networks, for example, Birm-
ingham (England, Warren et al., 2016), Berlin (Germany;
Fenner et al., 2014), Novi Sad (Serbia; Savić et al., 2019),
Ghent (Belgium; Caluwaerts et al., 2020) or Amsterdam
(the Netherlands; Ronda et al., 2017), but the majority of
cities across the world lack such a detailed network. WMO
regulations prevent official weather stations being located
in cities, since they require relatively open surroundings.
Though obstructions characterise the urban climate, their
heterogeneity complicates taking representative measure-
ments of the city as a whole. From street to street, vast
differences can occur, especially in wind speed, but also in
temperature and, to a lesser extent, humidity (Heusinkveld
et al., 2014).

To compensate for this lack of data, the urban mete-
orological research community has embraced the use of
crowdsourcing. Muller et al. (2015) define crowdsourc-
ing as “Obtaining data or information by enlisting the
services of a (potentially large) number of people and/or
from a range of public sensors, typically connected via the
Internet.” An increasing number of crowdsourcing studies
have been conducted recently, mainly to study the urban
heat island effect (Wolters and Brandsma, 2012; Chapman
et al., 2017; Fenner et al., 2017; Feichtinger et al., 2020),
urban rainfall (de Vos et al., 2017) and air pressure (Mass
and Madaus, 2014). Urban air temperature and rainfall
are well-captured by so-called Personal Weather Stations
(PWSs): small weather stations designed for use by citi-
zens, which can be installed on balconies, in gardens or on
rooves.

Wind has so far not been researched through crowd-
sourcing. Urban wind speed and direction are hard to
quantify due to the strong turbulent nature of wind.
Observational studies have usually been confined to sin-
gle streets, where canyon profiles of wind speed and
direction are measured with masts (Rotach et al., 2005;
Eliasson et al., 2006). Urban wind studies often rely on
wind tunnel experiments or computational fluid dynamics
models to study wind loads on buildings, at pedestrian

level, and for urban pollutant dispersion (Carpentieri
and Robins, 2015; Ramponi et al., 2015; Toparlar et al.,
2017). Knowledge of the urban wind is important for top-
ics such as air pollution dispersion (Pascal et al., 2013),
mechanical wind loads on buildings (Ramponi et al.,
2015), human thermal comfort (Hsieh and Huang, 2016;
Heusinkveld et al., 2017), and urban wind energy potential
(Kent et al., 2017).

Crowdsourcing might be useful to investigate the
urban wind climate. Crowdsourced data are available in
great quantities, but quality is often relatively low, so
serious scrutiny of data is required. The station set-up
and site representativeness are generally less well-known
(Muller et al., 2015), which impacts data interpretation.
In this study, we aim to learn whether crowdsourced
wind speed data from “Netatmo" PWSs are suitable for
analysing urban wind speed. We perform this research
in Amsterdam (the Netherlands), where the Meteorology
& Air Quality group of Wageningen University operates
an urban network of automated weather stations with
high-quality wind measurements (Ronda et al., 2017),
to serve as reference against which the crowdsourced
stations can be tested. First, the Netatmo wind mod-
ule is compared to reference sonic anemometers records
in the field, in both a rural and an urban setting. Sub-
sequently, from these field tests a bias correction and
Quality Assurance (QA) protocol is established, which
is then applied to the crowdsourced urban wind speed
measurements. Finally, these data are used to analyse
the wind speed characteristics of different Local Cli-
mate Zones (LCZs; Stewart and Oke (2012)) in Ams-
terdam, and to compare the results to the reference
network.

Section 2 introduces the data (crowdsourced and ref-
erence stations), as well as the QA protocol used to filter
the crowdsourced data; section 3 shows the results, which
are discussed in further detail in section 4, before final
conclusions are drawn in section 5.

2 DATA AND METHODOLOGY

2.1 The Netatmo wind module
and data gathering

We focus on the Netatmo brand PWS, because of its pop-
ularity as a PWS brand in Europe. As an illustration, in
large cities such as Berlin or Paris, hundreds to thousands
of Netatmo PWSs are set up (Meier et al., 2017), but even
smaller cities such as Amsterdam or Toulouse appear to
be equipped with hundreds of stations measuring urban
weather (de Vos et al., 2017; Napoly et al., 2018). All
Netatmo PWSs contain the same hardware, which limits
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F I G U R E 1 Number of actively measuring Netatmo wind
stations over the course of the study period in Amsterdam

discrepancies between stations, and allows development of
a uniform bias-correction and QA procedure. Meier et al.
(2017) have developed such a QA procedure for PWS air
temperature data, and we will follow their example to
develop such a system for PWS wind speed data, using ref-
erence measurements during QA. The Netatmo company
started distributing their wind sensor midway through
2015, as the latest addition to their weather station. For
Amsterdam, 60 PWSs measuring wind speed were present
within the period January 2016–July 2018. Not all sta-
tions were active for this whole period: at most 52 stations
actively measured in a single day, but we see a general
increase of the number of stations measuring over time
(Figure 1). At the beginning of 2016, few PWS owners will
have had the new wind module, though the PWS itself
has been gaining popularity over the years as well. The
wind module is a cylindrical sonic anemometer, 11 cm tall
and 8.5 cm in diameter, using four nodes in an opening
in the middle of the cylinder to measure the zonal and
meridional wind components (Figure 2). Measurements
are taken every 6 s and aggregated to mean and maximum
output values every 5 min. Accuracy of the wind speed
measurements is 0.5 m⋅s−1 for speed, and 5◦ for wind direc-
tion (Netatmo, 2019). The data of this study are obtained
through the Netatmo online API (Application Program-
ming Interface) method getstationdata. This method pro-
vides wind data at roughly 5 min resolution (variable time-
frame) in rounded integer km⋅hr−1 for wind speed and
degrees for wind direction. The API requires station and
module identifiers, which are requested from the getpub-
licdata API method. This method outputs a list of station
identifiers and their corresponding weather modules (out-
door module, wind, or rain meters) which can be used in
getstationdata.

2.2 Data evaluation

To evaluate the PWS wind speed measurements against
a known reference, without the complexity of an urban
environment, one Netatmo station was installed at the
experimental rural weather field in Wageningen, the
Netherlands (51.981◦N; 5.622◦E; 5.0 m.a.s.l.). This weather
field is a well-watered flat grass field that conforms to
WMO regulations for weather observations. The Netatmo
wind module was installed at 2 m height (Figure 2a),
allowing for direct comparison with the Gill/Campbell
Scientific CSAT3 3D sonic anemometer (measurement
rate 10 Hz; resolution: 0.001 m⋅s−1; 2% accuracy), also
installed at 2 m, distanced roughly 10 m away from the
Netatmo sensor. Rain and relative humidity are also
measured at the weather field and used in the devel-
opment of the QA procedure (Section 2.3). The field
comparison at the weather field ran from April 2018 to
December 2018.

As a second reference, located in an urban setting,
we utilise observations of three Netatmo anemometers
(Figure 2b) installed on the rooftop of the Chair of Cli-
matology building of the Technische Universität Berlin,
Germany (52.457◦N, 13.316◦E). Here the reference sonic
is a Gill Windmaster Ultrasonic Anemometer installed
on a pole, measurement height (middle of path): 9.74 m
above ground level (3.74 m above roof level). Wind speed
range: 0–45 m⋅s−1, resolution: 0.001 m⋅s−1, sampling at
10 Hz to give 1-min data. The three Netatmo sensors were
installed on a boom 0.55 m below the reference sensor,
in a north–south configuration, sensors each 0.25 m apart
(Figure 2b). These comparison measurements ran from
June 2018 to March 2019.

The reference to which we compare the crowdsourced
urban PWS observations is the Amsterdam Atmospheric
Meteorological Supersite (AAMS), which consists of 25
stations covering the city centre and suburbs, measur-
ing wind, temperature, and relative humidity. The air
temperature and humidity sensor (Decagon VP-3, U.S.A.)
is mounted inside a 184 mm aspirated radiation shield
(Davis, U.S.A.). The ventilation fan is powered by two
small solar panels mounted on top of the shield. The fans
work at global radiation levels >100 W⋅m2. The radiation
screens are mounted on lantern posts, 0.46 m away from
the edge of the lantern post, 4.0 m above ground level.
The ultrasonic anemometer (Decagon DS-2, U.S.A.) has
an accuracy of 0.30 m⋅s−1 or 3% (whichever is larger). The
anemometer is mounted above the radiation screen 0.50 m
away from the lantern post edge and at a height of 4.30 m
above ground level.

Rain and humidity observations from the WMO station
at Amsterdam airport (Schiphol, WMO 06240, situated
10 km to the southwest of the city centre) are used in the
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(a) (b)

F I G U R E 2 (a) Netatmo wind module (top sensor) at the Wageningen weather field, fitted with spikes to prevent birds resting and
disturbing the position. The silver cylinder is the outdoor temperature and humidity module, which is not used in this study. (b) Netatmo
set-up at Technische Universität Berlin. The sensor numbers refer to the identifiers of the Netatmo wind modules

bias correction for the PWS wind data. By using the WMO
data as input for the bias correction (rather than the AAMS
reference network), the correction protocol can be used for
any city with a nearby WMO station, and does not require
an extensive urban network. The WMO wind speed data
are not used as a reference.

The LCZ framework allows for an objective division
of a city and its surroundings into zones with equal mor-
phological properties, such as building heights, vegetation
fraction, and building material. According to the LCZ
framework, sites are classified in 17 classes, ten “built”
and seven “natural” classes (which can also be combined).
So far, the framework has mainly been applied in studies
investigating air temperature differences (e.g., Alexander
and Mills, 2014; Stewart et al., 2014; Leconte et al., 2015;
Skarbit et al., 2017; Beck et al., 2018). Others showed
that different LCZs also possess different characteristics in
terms of humidity (e.g., Unger et al., 2018a; Yang et al.,
2020) or human thermal comfort (e.g., Geletič et al., 2018;
Unger et al., 2018b; Kwok et al., 2019). To the authors'
knowledge, no investigation concerning wind character-
istics of LCZs has been carried out so far. For wind, the
building height and the building density are the most
important factors to determine the influence of the urban
fabric on wind behaviour. In the LCZ framework, these
can be distinguished in three categories of height (high,
mid and low-rise) and two categories of density (compact
and open) for the urban LCZs typically found in the city

centre of Amsterdam. The LCZ map (Figure 3) constructed
for Amsterdam, following the World Urban Database and
Access Portal Tools (WUDAPT) guidelines (http://www.
wudapt.org/; accessed 7 May 2020) shows the location of
the AAMS and Netatmo PWSs, their respective LCZs, as
well as the location of the WMO station. Table S1 contains
the full table of AAMS station locations and LCZs.

Most PWSs are concentrated around the city centre
(LCZ2 and LCZ5; compact/open midrise, and LCZ6, open
low-rise), with some very close to the river and canals
(LCZG, water), and three stations in sparsely built areas
(LCZ9), near farmland. We use LCZs as an indicator for
urban morphology, which has a strong impact on wind
speed (especially the ratio between building height and
street width), so comparing stations with similar LCZs is
required. We assume that morphology strongly determines
a certain wind speed distribution, and by pooling the indi-
vidual station data into one overall distribution per LCZ
we are more likely to sample the ‘true’ wind speed distribu-
tion for a given LCZ, and not the microscale wind climate
of one particular station. In section 3.4.1, the PWS data
will be compared to the AAMS data over the period Jan-
uary 2017 to June 2018, which has high data availability
for both AAMS and PWS. Only stations roughly in the city
centre (between 52.33 and 52.4◦N, and 4.837 and 4.95◦E;
black box in Figure 3) are used. Using the entire PWS
network would give a biased image of the fit to the AAMS
reference, since a large number of PWSs are outside the

http://www.wudapt.org/
http://www.wudapt.org/
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F I G U R E 3 Local Climate Zone map of Amsterdam. The
diamonds indicate the PWSs, the circles the AAMS stations, and the
white triangle the WMO Amsterdam Airport station. The black
rectangle encloses the “city centre” stations used for analyses

city centre. The applicability of the data in calm or windy
conditions is examined in Sections 3.4.2 and 3.4.3, for a
relatively calm period (August–September 2017) and a rel-
atively windy period (February–April 2018) respectively.
Both periods contain a high data density of the PWS net-
work. Both sections also address the effect of morphology
on the wind speed distribution, analysing stations in LCZ2
and LCZ5.

2.3 Quality Assurance protocol

To set up a QA protocol to improve the quality of the
crowdsourced wind observations, we follow Meier et al.
(2017), who developed a rigorous QA procedure for air
temperature measurements from crowdsourced data. We
adapt and extend their QA protocol to be suitable for wind
data, as follows:

A. Location requirement and morphology (QA A1 in
Meier et al., 2017). This criterion is based on the pro-
vided location as present in the PWS data (latitude
and longitude). Stations with equal latitude and longi-
tude are excluded. Additionally, we did a visual assess-
ment using Google Earth to filter out unusual locations
(such as a station in the middle of a canal). The initial
crowdsourced dataset was filtered according to these

criteria, leaving 60 PWSs. These stations are classified
into LCZs, using the LCZ map of Figure 3.

B. Data averaging and filtering. The PWS data are pro-
vided in integer km⋅hr−1, at roughly 5-min resolution.
This step aggregates all data (PWS, WMO, test field,
AAMS) into hourly means. According to the Netatmo
website, the minimum wind speed measurement is
0 m⋅s−1, with an accuracy of 0.5 m⋅s−1 (1.8 km⋅hr−1).
However, having placed the wind module indoors for a
period of time, we found the minimum measurement
tended to be 1 or 2 km⋅hr−1 rather than 0, meaning
that very low wind speed or calm conditions are prob-
ably not well captured by the sensor. This is also often
reported by users at the official Netatmo forum (https://
forum.netatmo.com/; last accessed 5 May 2020). The
histograms of the raw PWS data indeed show a peak
at precisely 1.0 km⋅hr−1, much more than seen in refer-
ence sonic anemometer data (not shown). The crowd-
sourced urban data especially suffer from the large
uncertainty at low wind speeds, which comprise a sig-
nificant part (up to 20% for some locations) of the
wind distribution. To eliminate the large bias in wind
distribution, all hourly means below 1.0 km⋅hr−1 are
excluded from the analysis. A peak at 2.0 km⋅hr−1

remains visible, but is less pronounced (not shown).
C. Filtering for meteorological conditions. From the

field experiments, we determine whether meteorologi-
cal circumstances, such as rain or humidity, negatively
influence the measurements. Netatmo users report that
rain disturbs the measurements, and that the stations
are prone to collecting moisture inside the sonic mod-
ule. We investigate any significant influence of rainy
(rain in the past 3 hours) and humid (RH > 95%) con-
ditions, and whether filtering for these circumstances
can improve data quality.

D. Systematic bias correction. Any systematic deviation
from the actual wind speed as measured during the
comparison measurements at the experimental sites
will be corrected for. The bias correction based on the
experimental set-up will be applied to the (filtered)
crowdsourced data from Amsterdam.

2.4 Wind statistics

A direct comparison between the crowdsourced data
and the professional AAMS data, as was performed for
Wageningen and Berlin, is complicated by the urban
heterogeneity and the contrasting set-up between PWSs
and the AAMS stations. Whereas the AAMS stations are
installed on lampposts within the street canyon (public
space), the PWSs are installed in private space. The exact
PWS set-up is unknown, which adds uncertainty. Hence,

https://forum.netatmo.com/
https://forum.netatmo.com/
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the wind statistics, rather than instantaneous values, are
compared. Under idealised, undisturbed conditions, wind
speed follows a two-parameter Weibull distribution (Jus-
tus et al., 1978; Takle and Brown, 1978; Conradsen et al.,
1984). This distribution is invalid below 0, has a peak at
low values, and a long tail. The distribution is determined
by shape (a) and scale (b) factors:

f (x) = a
b

(x
b

)a−1
e−(x∕b)a

. (1)

However, the observations do not always match
the Weibull distribution for sites with disturbances, for
instance where the wind speed distribution shows a
bimodal pattern, or where there is a high probability of
null (near-zero) wind speeds. This may occur in moun-
tainous regions, but also in complex environments such
as cities. This especially holds for PWSs, which have a rel-
atively low accuracy, and are therefore very likely to have
high peaks at the lower end of the wind speed distribu-
tion. Carta et al. (2009) have investigated several statistical
distributions to capture a variety of wind regimes in
the Canary Islands, including stations in mountainous
regions. They found that a mixture Weibull distribution
can represent a wind speed regime with a large probabil-
ity of null winds, which is what we would expect in a city.
Such a distribution combines two Weibull distributions
into one overall mixture distribution: one representing the
peak, and one representing the tail end of the distribution.
Equation (1) then turns into Equation (2):

f (x) = 𝜔1
a1(x)a1−1

ba1
1

exp
[
−
(

x
b1

)a1
]

+ 𝜔2
a2(x)a2−1

ba2
2

exp
[
−
(

x
b2

)a2
]
. (2)

Here a1,2 and b1,2 are shape and scale parameters,
respectively, for the first and second components. 𝜔1,2 are
the proportions of the two components, which sum to 1.
In this case, as for Equation (1), x represents the measured
wind speed (km⋅hr−1), and f(x) is the probability density
function.

We use the R-package mixdist to fit a mixture distri-
bution to the PWS and AAMS data (Macdonald and Du,
2018). This method iteratively fits the shape and scale
parameters, and estimates the proportion of the two distri-
butions, through a maximum likelihood procedure. This
requires an initial estimate of the first-order statistical
moments and proportions of the two distributions. These
are estimated from the data share below 3.0 km⋅hr−1,
which also provides an estimate of the proportionality.

We assess the performance of the PWS data against
the AAMS reference data through the resulting probability

density distribution (PDD). We do this graphically, and
numerically using the coefficient of determination (R2)
between the two PDDs, as is common practice in the wind
energy field (Garcia et al., 1998; Celik, 2004; Carta et al.,
2009). In order to compare the wind speed distributions
between the AAMS and PWSs, mixture Weibull PDDs are
constructed for both data sources for similar LCZs, for
an equal time period. All shown histograms of the mea-
surements are made with 0.5 km⋅hr−1 bins: the PDDs are
constructed from the fitted distribution parameters using
0.1 km⋅hr−1 intervals, up to the maximum range of the data
(often 20 km⋅hr−1).

3 RESULTS

3.1 Evaluating the mixture Weibull
distribution

To examine whether the mixture Weibull distribution
indeed outperforms a regular Weibull distribution for rep-
resenting urban wind speed, we fit various distributions to
a single AAMS station, located in the city centre (station
2194, Spuiplein; Table S1). This site is a square, surrounded
by midrise buildings (LCZ2). Since the site is not in a
narrow street canyon, the influence of turbulent flows
will likely be smaller than at a sheltered PWS site. Data
were filtered for rain and humidity (QA step C), but not
for low wind speeds (QA step B), since the AAMS sonic
anemometer is well capable of measuring very low wind
speeds. Fitting a normal two-component Weibull distri-
bution to the observations (Figure 4a) offers a fairly poor
result: the peak at the low wind speeds is poorly captured
whereas the right tail tends to overestimate the frequency
of higher wind speeds. On the other hand, the fitted mix-
ture distribution (Figure 4b) captures the peak and the tail
end, though a slight under-representation of the transition
between the peak and tail seems to occur (at ≈4 km⋅hr−1).
While graphically the mixture Weibull distribution fits
well to the observations, the R2 confirms that the mixture
distribution (R2 = 98%) outperforms the regular Weibull
(R2 = 84%). Note that R2 values of Weibull distribution fits
tend to be relatively high, since the 0 and the furthest tail
generally match (always very close to 0) because of the
shape of the distribution. Alternatively, we can evaluate
the bulk of the wind speed, below 5 km⋅hr−1, while exclud-
ing 0.0 km⋅hr−1. R2 for the mixture Weibull distribution
for this lower end still amounts to 93%, but for the regu-
lar Weibull distribution drops down to 66%, confirming the
superiority of the mixture Weibull distribution.

While these results show that in general the mixture
Weibull distribution represents the disturbed urban wind
environment well (other AAMS stations show similar
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F I G U R E 4 (a) Regular and (b) mixture Weibull distributions
fitted to the data of AAMS station 2194 (data used runs from
January 2016 to June 2018). Shape (a), scale (b) and proportionality
(𝜔) parameters are given for all (mixture) components. In (b), the
green line indicates the resulting mixture distribution made from
the two component distributions (red and blue lines)

results, not shown), for some stations the single Weibull
distribution performs equally well, for instance in rela-
tively open environments. However, the mixture Weibull
distribution is a viable tool to use for the typically urban,
sheltered PWSs.

3.2 Bias analysis through comparison
measurements at Wageningen weather
field

For the Wageningen comparison measurements, the unfil-
tered PWS data (Figure 5a) show a systematic under-
estimation of the wind speed which increases with the
actual wind speed. Also, the PWS frequently measures
1.0 km⋅hr−1 when the actual wind speed is higher. Thus,
hourly mean wind speeds of 1.0 km⋅hr−1 and lower are
excluded from all crowdsourced datasets (QA step B).

Moisture can collect inside the device, which is not
completely watertight, and which can influence the
measurements (a common issue according to the users'
forums). This problem appeared after three months
when our installed PWS stopped measuring, at which

point we dismantled the module, cleaned and dried it,
and re-installed it in the field. Sonic anemometer mea-
surements are known to be disturbed by rain and water
droplets, which can affect the sonic path and the instru-
ment itself (Campbell Scientific, 2017). To investigate
the effect of humidity and rain, rain events are classified
as hours with more than 0.1 mm accumulated rainfall,
measured by the Wageningen pluviometer, as well as two
hours afterwards, to also take into account possible collec-
tion of droplets on the anemometer path. In a similar way,
humidity events are hours with >95% relative humidity,
measured by the reference. High humidity events mainly
coincide with positive wind bias by the Netatmo station
in the lower wind speed regions, whereas rain events
are distributed over the entire wind speed distribution
(Figure 5a).

After rain and humidity filtering, and removing the
1.0 km⋅hr−1 data, 64% of the data remain for analysis
(2,294 hrs from 3,570). We correct for the systematic bias
based on the wind speed measured by the PWS, not on the
‘ground truth’ of the reference sonic. Hence, the correc-
tion is independent from reference data and can be used
universally. The data are corrected with a linear regression
model, optimised for the median absolute error (MDAE)
of resulting corrected wind speed, to give high outliers
less weight. Other regression models, including higher
polynomial models and multiple linear regression models
including other variables such as humidity or rain, have
been tested, but a linear regression model explained most
variance whilst maintaining model simplicity:

v = N(1 + c). (3)

In Equation (3), v is the resulting, corrected wind speed
(km⋅hr−1), N the uncorrected (but filtered) wind speed
measured by the Netatmo anemometer, and c is the regres-
sion coefficient (c = 0.559 in this case). The majority of
the corrected data follows the 1:1 line (Figure 5b), though
a portion of positive outliers remains. MDAE amounts
to 0.78 km⋅hr−1, down from 2.5 km⋅hr−1 in the uncor-
rected set. However, the root mean square error (RMSE)
of the corrected data is still 1.95 km⋅hr−1, compared to
3.46 km⋅hr−1 in the uncorrected dataset, indicating that
spread is still visible in the corrected dataset.

3.3 Bias correction of comparison
measurements in Berlin

To investigate the robustness of the correction coeffi-
cient obtained at the Wageningen site, it is applied to
correct the Berlin Netatmo data, after QA step B. Data for
rain and humidity are obtained from the WMO station
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(a) (b)

F I G U R E 5 Scatterplots of hourly averaged wind speeds (km⋅hr−1) as observed by the sonic reference instrument (x-axis) and the
Netatmo station (y-axis) at the Wageningen weather field. (a) shows the unfiltered, uncorrected data, with rain and/or humidity events
marked in blue. (b) shows the resulting data after filtering and bias correction. The correction factor c used is 0.559. MDAE is the Median
Absolute Error; MAE the Mean Absolute Error; RMSE the Root Mean Square Error and R2 the coefficient of determination R2

Dahlem (WMO 10381), close to the measurement location
(52.454◦N, 13.302◦E, 51 m.a.s.l.).

The Berlin wind speed data (Figure 6) are notably
lower than the Wageningen data, with hourly aver-
ages reaching only 8 km⋅hr−1, with some rare outliers to
14 km⋅hr−1. This is partly due to the lower wind speed
in urban areas in general but can also be caused by the
trees surrounding the building, sheltering the station. In
this sense, the Berlin data represent what we can expect
in terms of Netatmo set-up: sheltered environments in gar-
dens or on balconies. Consequently, around 40% of the
hourly values are 1.0 km⋅hr−1, which are filtered out in QA
level B. Filtering for rain and humidity events in QA level C
(of which rain is the main contributor; humidity hardly
ever reaches 90% for this site), brings the total data reduc-
tion to 45.1%. This indicates that the main expected con-
tributor to error is the underperformance of the hardware
at low wind speeds.

The correction factor obtained from the Wageningen
dataset (c = 0.559) is initially applied to the (filtered)
Berlin dataset (Figure 6a). Results are good, with the out-
put statistics showing a better response than for Wagenin-
gen: MDAE is only 0.55 km⋅hr−1, RMSE is 0.64 km⋅hr−1

and R2 is 83%. However, some underestimation still seems
to be present, although not as prominent as in the initial
data. Therefore, we repeated the optimisation procedure
for the Berlin dataset to derive a new correction constant.

This new correction constant is higher (c = 0.884), indi-
cating that the underestimation of the Netatmo is stronger
in Berlin than at Wageningen. Especially at relatively low
wind speeds, the fit to the reference observations is bet-
ter, and model statistics improve overall (Figure 6b). At
the upper end of the measurements, some overestimation
appears due to the higher correction factor which weighs
heavier on higher wind speeds (Equation (3)). Since this
new correction factor is tuned towards a wind speed dis-
tribution characterised by lower (urban) wind speeds, this
might be a preferred tool to correct the urban PWS mea-
surements than the correction coefficient derived from
the rural Wageningen data, which covers a much wider
wind speed spectrum. In Section 3.4, both will be tested to
see which one results in a better fit to the reference net-
work. A separate calculation of the correction coefficient
on the Wageningen data, using only wind speeds below
10 km⋅hr−1, did not significantly change the previously
found value for c.

3.4 Application of QA to Amsterdam
data

The previous sections showed that the Netatmo anemome-
ter is capable of measuring wind speeds, but requires a sub-
stantial correction for rain/humidity events and portrays a
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F I G U R E 6 Hourly averaged wind speeds of the three Berlin Netatmo stations (y-axis) against reference sonic observations (x-axis).
Netatmo data have been filtered and corrected. (a) shows the correction using c = 0.559 obtained from the Wageningen dataset, and (b)
shows the corrections using c = 0.884, obtained from optimising the Berlin data. Abbreviations are as in Figure 5

systematic negative bias. The following sections apply the
QA protocol from Section 2.3 to the urban PWS data, com-
paring the data after each QA step to the rain and humidity
filtered AAMS data as the reference, with the R2 of the
PDDs as a measure of goodness of fit. In Sections 3.4.2 and
3.4.3, the data are separated into periods of relatively low
and high wind speeds to analyse the dependency of the QA
protocol on mean wind speed.

3.4.1 QA effect on the entire dataset
(January 2017–July 2018)

The AAMS dataset contains 99,950 records over 17 sta-
tions, after filtering for rain and humidity (which removed
34.7% of the originally available data with the number
of stations to be used for analysis at a given time fluc-
tuating between 5 and 15). This filtered dataset serves
as the reference against which the PWS data are tested
across the various QA steps. For the PWS data, the total
unfiltered data available (prior to any QA) are 164,267
records over 17 stations (Figure 7a). At QA level B, which
removes the 1.0 km⋅hr−1 values, the dataset is reduced by
21.6% to 128,655 records (Figure 7b). At QA level C, filter-
ing for rain and humidity, total data reduction is 45.9%,
or 88,897 records (Figure 7c). The disturbing effect of
the 1.0 km⋅hr−1 measurements can be seen in Figure 7a,
where the peak is prominent and strongly influences the
PDD of the PWS data.

The fit to the reference AAMS data is decent (R2 =
64%), since the centre of the PWS PDD is much lower than
the reference. Removing these 1.0 km⋅hr−1 values strongly
improves the fit (to R2 = 85.8%; Figure 7b) but the peak at
low wind speeds is still prominent. Filtering for rain and
humidity (Figure 7c) does little to improve the peak val-
ues, since rain events tend to coincide with relatively high
wind speeds, and as such the main data reduction occurs
at the tail end of the PDD. The fit only marginally improves
with respect to the previous QA step (to R2 = 87.1%).
Applying the bias correction (using c = 0.559) results in
a strong improvement (R2 = 91.6%), which eliminates the
high peak value, and the PWS PDD fits that of the AAMS
data much better. However, due to the linear nature of the
correction, some overestimation of the higher wind speeds
is introduced. Using c = 0.884 degrades the result since
low wind speeds are under-represented in that case, and
R2 is only 77.7% (not shown). From this point onward, the
value of c is always 0.559, the Wageningen value, since it
gives better results.

3.4.2 Calm period (August–September
2017)

August and September 2017 were characterised by
generally calm conditions in Amsterdam: 78% of hourly
wind speed values measured at Amsterdam airport
were below 5 m⋅s−1. During the period, nine PWSs were
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F I G U R E 7 QA protocol
applied to all city centre PWSs
(January 2017–July 2018). Bars
indicate the PWS data in 0.5 km⋅hr−1

bins; red and blue lines are the two
Weibull components that make up
the mixture Weibull distribution
(green). The black dashed line is the
rain- and humidity-filtered AAMS
reference probability density
distribution (PDD). a1,2, b1,2 and 𝜔1,2

are shape, scale, and proportionality
parameters of the components,
respectively, as in Equation (2). R2 is
the squared correlation between the
PWS PDD and the AAMS PDD. (a) is
the unfiltered, hourly averaged data,
(b) the data with 1.0 km⋅hr−1 values
removed (QA level B), (c) the data
filtered for rain and humidity (QA
level C), and (d) the bias-corrected
data using c = 0.559 in Equation (3)
(QA level D)
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operational in LCZ2, compared to twelve AAMS stations.
Prior to any filtering (QA level A), the PWS data con-
tains 10,243 observations across all nine stations. The
twelve AAMS stations only have two missing hours in this
period, but the rain and humidity filters remove 36.4% of
the data (leaving 11,182 records). The histograms of the
wind data demonsrate the calm conditions in this period
(Figure 8): both the unfiltered PWS data and the AAMS
data (Figure 8a) peak at very low wind speeds, and the
1.0 km⋅hr−1 peak of the PWS data makes up for over 20% of
the histogram. Indeed, at QA level B (Figure 8b), 27.6% of
the data are filtered out, leaving 7,418 records. This shifts
the centre of the distribution to almost exactly the value of
the peak in the AAMS distribution, resulting in a very good
fit to the reference even at QA level B (R2 = 94.7%). The
tail of the PWS PDD slightly overestimates the occurrence
of high wind speeds, but by filtering for rain and humidity
(Figure 8c) this is corrected, and the fit to the AAMS refer-
ence is further improved (R2 = 97.9%). When applying the
bias correction (with c = 0.559), results become worse (R2

drops to 61.2%; Figure 8d), since low wind speeds are over-
corrected towards higher values. The bias correction does
not seem to perform well during these circumstances with
very low wind speeds, and just data filtering is enough
to obtain a good fit to the reference network. The PWS's
tendency to underestimate wind speed seems to become

an issue only when wind speeds are not low (median
wind ∼2 km⋅hr−1), so QA step D for these situations is not
recommended.

To ensure this result is not only valid for LCZ2,
stations from LCZ5 are evaluated for the same period
(Figure 8e–h). Here we have six AAMS stations with the
same relative data reduction after rain and humidity fil-
tering (5,576 observations left), and 18 PWSs. There are
a total of 18,515 hourly PWS observations across the 18
stations prior to any filtering. The low winds seem even
more prominent in LCZ5: the AAMS observations peak at
2.0 km⋅hr−1 (Figure 8e). Removing the 1.0 km⋅hr−1 mea-
surements (QA level B) reduces PWS data by 20.6% (14,700
measurements left). The rain and humidity filter (QA
level C) brings the total data reduction to 49.6% (9,329 mea-
surements left), comparable to LCZ2. This mainly filters
the higher wind speed observations at the right tail, though
some over-representation of high wind speed remains.
Oddly enough, here the best results have been made by
just the hourly, unfiltered data (QA step A, R2 = 94.3%),
since the AAMS wind speed values themselves are very
low. Understandably, applying the bias correction (QA
level D) degrades the fit to the AAMS values further since
the distribution is shifted to the right (Figure 8h). Some
differences in the characteristics of the Weibull distribu-
tion appear between the two LCZs. Especially the scale (b)
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F I G U R E 8 QA applied to the calm wind period (August–September 2017), for (a–d) LCZ2 based on nine PWSs (bars) and twelve
AAMS reference stations (dashed black lines), and for (e–h) LCZ5 based on 18 PWSs (bars) and six AAMS reference stations (dashed black
lines). The set-up is similar to Figure 7. In (d) and (h), QA level D, the value for c is 0.559

parameter is lower for both mixture components in LCZ5,
indicating lower wind speeds altogether (the scale parame-
ter scales with mean wind speed). The shape (a) parameter
is only different for the first mixture component (red lines
in Figure 8): at 4.83 in Figure 8f it shows a very narrow dis-
tribution with a clear peak, related to the narrow shape of
the overall distribution, indicating low wind speed values
and low spread. Regardless of the LCZ, the QA protocol
is not fully able to improve wind speed estimations from
PWSs under calm conditions, only up to a certain point

(QA level C, and arguably not even that for LCZ5), and bias
correction degrades results. Applying QA step D should
therefore be dependent on the mean wind speed. However,
applying a different type of correction model, consisting of
two separate corrections (for wind speed either above or
below 3 km⋅hr−1) did not significantly improve the results
compared to the model used here (results not shown). The
underperformance is therefore likely due to the strong rel-
ative error introduced by the integer data resolution and
the measurement accuracy of 1.8 km⋅hr−1 (0.5 m⋅s−1).
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F I G U R E 9 QA applied to the windy period (February–April 2018), for (a–d) LCZ2, based on nine PWSs (bars) and ten AAMS
reference stations (dashed black lines), and for (e–h) LCZ5 based on 18 PWSs (bars) and six AAMS reference stations (dashed black lines).
The set-up is similar to Figure 7. In (d) and (h), QA level D, the value for c is 0.559

3.4.3 Windy period (February–April
2018)

The period February–April 2018 was relatively windy,
with 54% of the hourly wind speeds at Amsterdam air-
port above 5 m⋅s−1. 15,497 AAMS records are available in
LCZ2 after filtering, out of ten AAMS stations, of which
one reported no data for one month. There are 16,945
unfiltered hourly PWS records available for LCZ2, over
nine PWSs. Data reduction is 17.9% at QA level B (13,910

records left); 38.0% for QA level C (10,507 records left).
Compared to Figure 8, Figure 9 shows a wider distribu-
tion of wind speed, and the peak of the data is not at
1.0 km⋅hr−1 this time, but at 2.0 km⋅hr−1 (Figure 9b). The
AAMS data are centred around 5 km⋅hr−1, indicating that
the average wind speed measured by the reference net-
work is higher than in the previous case. Here, the bias
correction is clearly valuable, resulting in a very good fit
at the centre of the distribution (Figure 9d; R2 = 94.3%).
Comparing the proportionality parameters of the tail
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distribution (𝜔2) between Figures 8d and 9d reveals that
the tail end of the distribution contributes relatively more
than the peak: 𝜔2 always exceeds 0.5.

LCZ5 contains 6,407 reference observations across six
AAMS stations, and 30,413 PWS observations after exclud-
ing missing data, across 18 PWSs. 23.4% of the data are
removed at QA level B (23,290 records left); 43.5% for QA
level C (17,176 records left). The AAMS data are similar
to LCZ2, but with a longer tail end (observed wind speeds
also exceed 15 km⋅hr−1). Initial unfiltered PWS data are
still focused on the strong peak at 1 km⋅hr−1 (Figure 9e)
resulting in a poor fit (R2 = 30%) with the higher-tailed
reference data. Removing the 1.0 km⋅hr−1 peak improves
the fit by shifting the distribution to the right, but still suf-
fers from a large number of low wind speed observations
around 2 km⋅hr−1 (Figure 9f,g). Applying the systematic
bias correction strongly improves the fit to the AAMS data
(R2 = 95.4% with c = 0.559; R2 = 94.9% with c = 0.884).
The shape of the first Weibull component is rather curious
owing to its low shape (a) parameter. A shape parameter
close to 1 approaches the exponential distribution (where
a = 1) which carries a strong weight at the low end of the
distribution. The wider tail of LCZ2 is the most remark-
able difference in wind speed distribution between the
two LCZs, suggesting a higher likelihood of higher wind
speeds, which could be caused by funnelling through street
canyons (Macdonald, 2000). For LCZ5 we conclude that, as
for LCZ2, the QA protocol strongly improves the raw PWS
data to the point where they can provide an estimate of the
wind speed distribution for a windy case. The poor result
of Section 3.4.2 can therefore be attributed to the very low
wind speeds which make up the bulk of the distribution,
at which the Netatmo anemometer is not capable of mea-
suring due to hardware limitations and the coarse output
in integer km⋅hr−1.

4 DISCUSSION

4.1 Use of PWS data in other studies

The use of citizen science is not new in meteorology,
and has even aided in the birth of the field (Eden, 2009).
The emergence of PWSs has contributed to various stud-
ies, especially in urban areas lacking traditional measure-
ments (Steeneveld et al., 2011; Wolters and Brandsma,
2012; Chapman et al., 2017; de Vos et al., 2017; Fenner et al.,
2017; Chapman and Bell, 2018), but also at the level of
national weather authorities (Krennert et al., 2018; Nipen
et al., 2020). While PWS data provide valuable insights into
undersampled urban regions, the data remain of relatively
low quality compared to WMO standards. The nature of
the technique means there is little information regarding

the set-up of the station, which will not have been per-
formed by an expert, and can thereby lead to substantial
errors in the data. Additionally, the hardware itself can be
a cause of error, such as unventilated screens heating up
during the day to strongly overestimate outside air tem-
perature (Bell et al., 2015; Meier et al., 2017). Our study
shows that hardware can play a significant role in wind
speed errors as well, here related to the effect of humid-
ity and rain on the anemometer. For meaningful results,
extensive quality checks need to be made, and have been
constructed for PWS air temperature data (e.g., Meier et al.,
2017; Napoly et al., 2018; Nipen et al., 2020) and rain
(de Vos et al., 2017; 2019). These account for the differ-
ent error sources associated with crowdsourced PWS data
by statistical checks and/or using data from surrounding
(reference) stations to determine and filter out potentially
erroneous data. For wind speed this is not applicable due to
the microscale character of the measurements, but group-
ing stations into LCZs is an appropriate solution, reducing
the impact of potentially wrong individual station data.

Since our overall aim is to develop a QA procedure that
does not rely on WMO wind data, we have also made use
of the precipitation dataset of de Vos et al. (2019), who have
studied Netatmo rain data over Amsterdam during the
same study period as our work. We constructed a precipi-
tation filter based on their PWS precipitation data, which
showed a very strong similarity to the WMO-constructed
precipitation filter we have used for our QA protocol (filter
results were identical for 94% of the time). The combina-
tion of crowdsourced data to generate broad datasets can
thus be a helpful tool for urban meteorology, as shown by
de Vos et al. (2020).

Using crowdsourcing or non-traditional data
sources for wind measurements is comparatively rare.
Agüera-Pérez et al. (2014) utilise several data sources
to construct a global wind field for Andalusia (Spain),
and the Spanish Meteoclimatic platform (https://www.
meteoclimatic.net/; last accessed 7 May 2020) offers data,
though without QA. Furthermore, the density of the net-
work is scarce in comparison to our work (one station
every ∼450 km2), and only some metadata such as mea-
surement height is known. An interesting effort has been
made to use mobile phones to measure wind, using an
add-on device to create crowdsourced handheld wind
observations (Hintz et al., 2017), but the dataset is limited
and seems focused towards the coast (and is mainly used
by windsurfers).

4.2 Causes of error in PWS wind

The greatest issue with crowdsourcing data is its lack
of metadata (Muller et al., 2015). The aforementioned

https://www.meteoclimatic.net/
https://www.meteoclimatic.net/
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scarcity of studies exploring crowdsourced or otherwise
unorthodox measurements can be ascribed to the large
uncertainties inherent in (urban) wind measurements.
Wind is strongly variable in time and space, more so than
air temperature and rainfall. The station set-up is a cru-
cial factor: air temperature measurements are affected by
radiation from nearby walls or direct sunlight in the case
of unshielded thermometers; rain is sensitive to the ori-
entation and level of shelter of the station (which can
cause underestimation of rainfall), but wind speed is
affected not only by orientation (the sonic anemometer
needs to be level), and strongly by shelter and obstacles
(which induce turbulence and block the flow), but also
the height of the measurement, which is unknown. While
it is unlikely that an anemometer is used for anything
other than measuring outside wind speeds, it is easy for
inexperienced users to make small mistakes during station
set-up, such as angling the sonic anemometer. The wind
module is a separate purchase, and therefore a conscious
one by each Netatmo owner, which could suggest that
the owner has some understanding on how to properly
install such a device, but this cannot be reliably quanti-
fied. Only the most basic location information is given by
Netatmo, which does not contain any information regard-
ing set-up, calibration, or height of the measurements. Cit-
izens have the option to provide more information about
their station on the Wunderground platform (https://
www.wunderground.com/; last accessed 7 May 2020) or
the Weather Observations Website (https://wow.metoffice.
gov.uk/; last accessed 7 May 2020), but this is entirely vol-
untary and is provided by only a few owners. PWS owners
on rare occasions have their own weather website, which
often provides very detailed information about the sta-
tion, but these tend to be the higher-end stations such as
Davis Vantage stations (Steeneveld et al., 2011; Wolters and
Brandsma, 2012), not the cheaper Netatmo devices.

A large uncertainty lies within the Netatmo PWS itself:
our bias analysis and experimental set-up shows that the
station has a tendency to underestimate relatively high
wind speeds, and substantially underestimates very low
(< 2 km⋅hr−1) wind speeds due to the coarse output res-
olution. We know that the measurement frequency is
roughly 0.16 Hz and that these measurements are then
aggregated into the ∼5 min output obtained through the
API, so potentially the raw unprocessed data could provide
a solution to the low wind speed errors. Other PWS brands
might not suffer from the issues at low wind speeds com-
bined with coarse output, which could make QA level B
unnecessary for these cases.

Wind speed in the open field follows a logarithmic pro-
file increasing with height; in the urban area the usual
boundary-layer similarity theory is not valid, but wind still
increases with height (Rotach, 1995; Castro, 2017; Kent

et al., 2018). We expect the PWSs to be usually mounted
at some height above the ground, at best 2 m, but also on
balconies, window sills, or wherever it is most suitable for
the instrument owner. A more ambitious weather hobbyist
might install the anemometer on a pole or on top of a shed,
for example, to better measure the actual wind. Stations
installed on balconies or rooftops will give a completely
different signal over time than a station in a sheltered gar-
den. When installing the anemometer, the software offers
the opportunity to report the station's height above ground.
However, this information cannot be extracted from the
Netatmo data obtained through the API, so we cannot
check whether any correction towards a standard value
(e.g., 10 m) is performed prior to data storage. This uncer-
tainty also follows from the bias correction parameter,
which is different between the open test field at Wagenin-
gen (Section 3.2) and the sheltered rooftop environment
of Berlin (Section 3.3). While the comparison measure-
ments in Berlin where carried out within the urban area,
the rooftop measurement at the top of the canopy layer is
apparently not ideal to use, since the Amsterdam Netatmo
stations are likely situated in the urban canopy, thus expe-
riencing a different wind regime. This is possibly why the
Wageningen correction factor seems to yield better results
for the Amsterdam data, despite it being obtained from a
rural site, but at 2 m height.

4.3 Application and perspectives

Due to the uncertainty of station set-up, the data obtained
from individual PWSs cannot give an accurate representa-
tion of the wind speed climate; the station might be located
on a balcony, a shed, near a wall, etc. A 1-to-1 time series
for individual PWSs compared to their closest match-
ing AAMS stations displayed large deviations around the
mean (not shown), even for daily averages, indicating the
strong microscale character of the measured wind speed.
The mixture Weibull distribution successfully captures the
variability of wind within a city, and provides insight into
the wind speed differences between neighbourhoods and
LCZs. For a more quantitative temporal assessment of
wind speed, PWSs appear not to be the right tool, and spe-
cialised measurement networks set up by professionals are
still necessary. For instance, the effect of wind speed on
thermal comfort during heat waves is better researched
using stations situated in street canyons with a higher
accuracy (such as the AAMS network); the effect of wind
on thermal comfort is substantial, and strongly dependent
on the local conditions (Heusinkveld et al., 2017). While
a technique like Generalized Extreme Value statistics of
thermal comfort as in Steeneveld et al. (2011) would be
possible using the substantial length of the crowdsourced

https://www.wunderground.com/
https://www.wunderground.com/
https://wow.metoffice.gov.uk/
https://wow.metoffice.gov.uk/
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dataset, this is usually not applied by policy makers, but
could be in the future with increasing number of PWSs in
cities worldwide.

The use of a PDD is very common in the field of wind
energy, where these functions are used to assess the wind
energy potential of given areas (Celik, 2004; Carta et al.,
2009; Drew et al., 2013). It would therefore be interesting to
research the value of the crowdsourced wind data for iden-
tification of possible urban wind energy generation given
the difficulties in estimating urban wind resource (Walker,
2011). A potential issue here could again be the unknown
height of the stations; a (Weibull) PDD is typically con-
structed at a certain level and transposed to the hub height
of the expected wind turbine. A possible way to circumvent
this issue is to assume a likely range of heights (between 2
and 5 m seems the most logical given the residential char-
acter of the PWS locations, though balcony stations can
be much higher) and construct the transposed PDDs for
the minimum and maximum height to see the spread in
the results. Geographic Information System data on build-
ing height could also provide some information for rooftop
and balcony stations.

The sensitivity of the station to set-up errors (i.e., tilt-
ing, sheltering, measurement height) needs to be inves-
tigated in a systematic way, as Bell et al. (2015) did for
air temperature and humidity. Wind tunnel experiments
using several Netatmo anemometers could investigate the
influence of the angle of tilt of the station on the reported
wind speed values, and perhaps determine a threshold
wind speed when the measurements are of sufficient qual-
ity. A long-term urban experimental set-up of the Netatmo
anemometer next to a known reference station could give
some insight into expected sensor drift, the cause of errors
for the low urban wind regimes and a more robust estimate
of the bias correction parameter needed.

5 CONCLUSIONS

This study makes use of wind speed data from 60 Netatmo
Personal Weather Stations (PWSs) collected between Jan-
uary 2016 and June 2018 in the area of Amsterdam, the
Netherlands, as well as data from an urban reference
network and two experimental set-ups. From these data,
we have established a Quality Assurance (QA) protocol
to filter incorrect data, remove the effects of rain and
humidity, and correct for a systematic underestimation
of wind speed measured by PWSs. The quality-controlled
PWS wind speed data can be used to construct a mix-
ture Weibull probability density distribution (PDD) which
conforms to the reference network. The wind distribution
of different Local Climate Zones (LCZs) can be investi-
gated by aggregating the data from all stations in those

LCZs. While we conclude that for extended periods with
very low (<2 km⋅hr−1) wind speeds, the QA protocol does
not improve the raw data, and the bias correction even
degrades results, we acknowledge that other PWS devices
might not suffer from hard- and software issues associ-
ated with the Netatmo PWS anemometer, which needs
to be investigated in further studies. Based on the results
obtained, we conclude that Netatmo PWS wind speed data
are useful for urban climate research under the following
conditions:

• The record is of sufficient length (> ≈2 months) to have
a large amount of data and to document meaningful
probability density distributions.

• The mean wind speed in this period is not low
(>2 km⋅hr−1): inherent issues with the Netatmo hard-
ware induces substantial errors at low wind speeds,
and the output of the stations in integer km⋅hr−1 only
increases the relative error made.

• External WMO data of rain and humidity are available
to apply the QA protocol, which filters out rain and
high relative humidity (RH > 95%) events. Humidity
impacts the sonic anemometer and reduces its quality.
Humidity and rain data could also be collected from
(QA-controlled) PWSs.

• The research in question is interested in the distribution
of wind, rather than the wind at one given moment in
time or space.
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