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W	hat activity would you consider doing  
	tomorrow if the weather forecast predicts  
	a temperature of 27°C? Taking your kids or 

grandparents for a walk, or maybe a good opportu-
nity to visit that new art museum? That walk may 
become stressful if it is sunny and the path offers 
little shade along the way. However, on a windy day, 
or on a route shaded from direct sunlight, such as a 
narrow street canyon, thermal conditions may be just 
fine. By utilizing expert knowledge of the combined 
effects of temperature, humidity, wind speed, and 
radiation on the human thermal energy balance, it 
is possible to refine the general forecast to be more 
site specific about human comfort while outdoors. 
Climate change (McCarthy et al. 2010, Coumou 
and Rahmstorf 2012, Coumou and Robinson 2013), 
urbanization-related heating [the urban heat island 
effect (UHI)], and recorded excess mortality dur-
ing recent European heat waves generated an acute 
awareness for heat-related health risks. The elderly, 
people with cardiovascular diseases, and outdoor 
workers are particularly vulnerable (Zander et al. 
2015). Accordingly, the need for easily accessible and 
local forecasting of human thermal comfort is grow-
ing. This paper presents a new smartphone app that 
communicates a location-specific human thermal 

comfort forecast based on the latest innovations in 
urban climate and biometeorology, computer science, 
communication technology, and land-use mapping. 
The forecasts were evaluated against four years of 
observations in the Netherlands.

Humans are relatively limited in physiological 
thermoregulation strategies to cope with heat or 
cold and must rely on choice of clothing, shelter, or 
behavioral thermoregulation. Such strategies may 
also affect the choice of outdoor activities. A per-
son’s interpretation of a standard weather forecast 
is subjective, and various empirical thermal indices 
to enhance weather forecasts have been introduced. 
These include the wind chill factor (Osczevski and 
Bluestein 2005) to quantify wind speed effects on the 
severity of cold weather conditions and the heat index 
(Steadman 1979) for hot conditions coupled with the 
effect of humidity on a perceived temperature scale. 
Unfortunately, none of these empirical indices build 
upon a physically sound human thermal energy 
balance model, and site-specific information, as in-
troduced by urban morphology, has been neglected.

Human thermal energy balance modeling has 
resulted in an “apparent” temperature that combines 
weather conditions, such as temperature, humidity, 
wind speed, and radiation. The latest insights are rep-
resented in the universal thermal climate index (UTCI) 
(Blzejczyk et al. 2012, Bröde et al. 2012). The UTCI is 
favored because it marries a dynamic clothing model 
and a state-of-the-art thermophysiological model of 
human heat transfer and temperature regulation (Fiala 
et al. 2012). The dynamic clothing model is based on 
what a person would wear according to the outdoor 
temperature (Havenith et al. 2012). The total human 
radiation load as part of the human thermal energy bal-
ance is expressed by a single temperature known as the 
mean radiant temperature Tmrt [Fanger 1970; see also 
sidebar “UTCI and mean radiant temperature Tmrt”].

The UTCI covers the full thermal exposure range 
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(i.e., both cold and heat exposure) and is categorized 
into a basic 10-class human thermal stress scale. The 
forecast level of thermal exposure is presented by a 
color code and forms the basis for our smartphone 
app (Fig. 1). This allows for communication of ther-
mal conditions using simple descriptive words such 
as “extreme heat stress” or “moderate cold stress” 
[see sidebar “UTCI and mean radiant temperature 
Tmrt”]. The UTCI was further tested across a range 
of climates from arctic to desert conditions and, 
over a range of thermal indices, the UTCI was best 
able to represent thermal stress levels (Blazejczyk 
et al. 2012).

Human thermoregulation is capable of handling 
a certain thermal range very well, but outside the “no 
thermal stress” range and especially on the hot side, 
the scale can shift easily to the next stress level (see 
widths of thermal classes in Fig. 1). The small stress 
steps on the hot side are related to the limited adapta-
tion that a clothing change can offer, since clothing 
is most effective in the cold range. Because the UTCI 
standardizes the human being (body, dynamic cloth-
ing, metabolic rate, etc.), there is still some translation 

required to make a personalized judgment (fitness 
level, age, exercise intensity, etc.); however, using 
UTCI is more straightforward than using standard 
weather forecast data. Note that precipitation is not 
included in the human thermal energy balance and 
clothing model for the UTCI. The impact of wind 
and radiation on the UTCI is large, and therefore we 
consider it a great step forward to use a combination 
of high-resolution numerical weather prediction 
(NWP) and geoinformation to improve a standard-
ized human thermal stress forecast.

Figure 2 illustrates the range of the UTCI classes 
(−29° to 40°C) on the basis of 4 years of observations 
(September 2011–September 2015) covering typical 
winter and summer weather conditions at the Veen-
kampen weather station in Wageningen, Netherlands 
(www.maq.wur.nl) (51.9809°N, 5.6197°E), which is a 
centrally located and representative weather station 
for the Netherlands. The station is equipped with 
solar and thermal radiometers (first class) mounted 
on a sun-tracker platform for direct, diffuse, and 
reflected solar radiation, and incoming thermal and 
shortwave radiation is measured separately. This 

Fig. 1. App screen view of thermal stress levels on a 10-point scale according to the UTCI index. The time 
interval is given at the top of the screen. Text boxes on the sides present urban microclimate examples and 
show where to read their thermal forecasts from the app screen. The scale bar (not in the app) represents 
the UTCI temperature (°C).

http://www.maq.wur.nl
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data assimilation and model verification using WMO 
weather stations in rural locations. Current NWP 
models lack the resolution to resolve complex envi-
ronments, such as cities. However, urbanized areas 
experience microclimates that differ greatly from 
rural settings (Oke 1982). A smartphone, however, 
knows its location and therefore can request very 
location-specific forecasts that may better suit user 
needs.

A similar increase in forecast skill can be ex-
pected by exploiting recent advances in geoinforma-
tion mapping. In the Netherlands, geoinformation 
(open-access) databases are regularly updated: lidar 
altimetry measurements with a density of more than 
4 points per square meter and an accuracy of less 
than 0.1 m (www.ahn.nl), multispectral-band aerial 
photographs (resolution <0.5 m; Aerodata, Belgium), 
monthly vegetation index classification through 
satellite monitoring if cloud cover permits (www 
.groenmonitor.nl), and up-to-date maps of buildings 
(www.kadaster.nl). By combining these data, new 
products can be created, such as information about 
individual trees (www.boomregister.nl). Geoinfor-
mation data can also be converted to a high-resolution 
land-use and roughness map for high-resolution 
mesoscale weather prediction (Attema et al. 2015).

Figure 3 shows a f lowchart of the steps that lead 
to the site-specific thermal stress forecast, which 

allows for direct calculation of Tmrt. In this maritime 
temperate rural climate (Köppen class: Cfb), the 
UTCI is skewed toward cold stress conditions, and 
extreme UTCI classes do not occur. It is also seen 
that wind-protected or sunny locations increase heat 
stress classes.

Considering numerical weather forecasts, a 
tremendous increase in diversity, availability, and 
frequency of weather forecast communications has 
emerged. These communications now include news-
papers, radio, television, text messaging, Internet, 
and smartphones. The number of products as derived 
from NWP models has increased accordingly. The 
demand ranges from nowcasting to short- and me-
dium-range seasonal and climatological forecasting. 
This has generated new services that include drought, 
fire risk, and flooding. Currently, where smartphones 
have become a major tool for communication, plan-
ning, and weather updates, they are also excellent 
tools to access a location-specific weather forecast.

Advances in NWP represent a quiet revolution 
because the improvements were gradual, based on 
scientific and technological advances (Bauer et al. 
2015). Typical NWP models are already perform-
ing very well when benchmarked against World 
Meteorological Organization (WMO) stations. The 
models are usually biased toward rural regions be-
cause NWP models have been optimized through 

Fig. 2. Frequency distribution (%) of the observed maximum thermal stress class (September 2011–September 
2015; all day, calculated for 3-h intervals).

http://www.ahn.nl
http://www.groenmonitor.nl
http://www.groenmonitor.nl
http://www.kadaster.nl
http://www.boomregister.nl
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can easily be adapted for 
other locations and future 
developments. The refined 
site-specif ic forecast ac-
counts for urban land use 
and morphology at 50-m 
spatial resolution, which 
is ref lected in the raised 
temperature (UHI) and 
wind speed reduction by 
enhanced surface rough-
ness. Here the point of de-
parture is the forecast from 
the European Centre for 
Medium- Range Weather Forecasts (ECMWF), 
which provides temperature, wind speed, radiation, 
and humidity. Already-subtle differences in shaded 
versus sunlit sides of a street can shift thermal stress 
levels by one class on the UTCI scale (Weihs et al. 
2012). As the resolution provided by the smart-
phone’s global positional system device is too coarse 
to distinguish between shaded and sunlit locations 

by the app itself, the app user determines one of the 
relevant environments at hand. A similar approach 
was adopted to estimate the impact of wind speed 
reduction. A shaded location is defined as a location 
with Tmrt equivalent to air temperature; such values 
are typical for narrow urban canyons. The sunny lo-
cation is approximated by direct solar radiation and 
reduced diffuse radiation components. The thermal 

Fig. 3. Flowchart of human thermal comfort forecast calculations, data com-
munications, and resources for the smartphone app (green: smartphone; 
blue: server at university; gray: NWP model).

UTCI AND MEAN RADIANT TEMPERATURE TMRT

The universal thermal climate index was developed by 
a European Cooperation in Science and Technology 

working group known as “Thermophysiological Modeling 
and Testing Toward a Universal Thermal Climate Index for 
Assessing the Thermal Environment of the Human Being” 
[European Cooperation in Science and Technology (COST) 
Action 3730].

The UTCI is an equivalent temperature of an actual 
complex microclimate thermal condition incorporating 
temperature, humidity, wind speed, and solar and thermal 
radiation. The UTCI is the air temperature Ta of a reference 
condition causing the same dynamic physiological response 
(after a 30–120-min exposure) as experienced in a complex 
microclimate. These reference conditions include exercise 
intensity equivalent to walking 4 km h–1, Tmrt = Ta, wind 
speed = 0.35 m s–1 (at 1.2 m), and relative humidity = 50% 
(T < 29°C) or vapor pressure = 2 kPa (T > 29°C).

The UTCI is calculated from a multinode (e.g., core, 
upper or lower arm, hand, or foot) human thermal 
energy balance model. It considers the human ther-
mal regulatory functions, such as vasoconstriction and 
vasodilation, sweat rate, and shivering. A human being is 
standardized for the UTCI: surface area = 1.85 m2, body 
weight = 73.4 kg, fat content = 14%, work load equivalent 
to walking 4 km h–1 [see Fiala et al. (2012) for further 
reading]. The UTCI assumes a dynamic clothing model 
and is based on what a person would wear according to 
the outdoor temperature (Havenith et al. 2012).

The UTCI equivalent temperature scale (°C) levels are 
a result of heat exchange with the environment caused by 
the physiological response of a human in actual environ-
mental conditions. This is expressed in terms of heat 
or cold stress in 10 “stress” classes. Note that the large 
UTCI temperature range of the neutral class (no thermal 
stress; Fig. 1) is related to the effectiveness of human 
thermoregulation and adaptation through dynamic cloth-
ing. The classes are more closely spaced in the hot range 
compared with the cold range because of the limited 
adaptation possibilities (e.g., through clothing).

For simplification, an approximation equation for the 
UTCI can be used but requires 10-m wind speed from an 
airport weather station (z0 = 0.01 m) (Bröde et al. 2012). 
Note that if wind speed is available at 1.2 m, it must be 
projected to 10-m height to use this equation (regardless 
of the location, multiply by 1.44).

It is common in human thermal energy balance model-
ing to express the solar and thermal radiation load as a 
mean radiant temperature Tmrt. It is the average surface 
temperature (skin and clothing) balancing the average 
absorbed solar and thermal radiation. The value of Tmrt 
considers the shape of a human being and thus weighs 
radiation from the sides more than from above and 
below. Standardized are shortwave radiation absorption 
(0.7), emissivity (0.97), and radiation interception shape 
factors (0.22) from four sides and from above and/or 
below (0.06).
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and within a city this distribution may be shifted to-
ward lower cold stress or higher heat stress because of 

radiation exposure is a sky-
view-factor-weighted aver-
age of the incoming ther-
mal radiation and NWP 
surface thermal radiation. 
It is still a work in prog-
ress to further refine Tmrt, 
for example, with a radia-
tive transfer model using 
environmental morphol-
ogy from geoinformation 
data (e.g., Lindberg et al. 
2008). However, more data 
on building a lbedo and 
emissivity are required. 
Similarly, we argue that a 
wind-protected location 
as an extreme value may 
have just a slight draft, and 
therefore the UTCI refer-
ence climate wind speed 
c ond it ion  w a s  chos en 
[0.35 m s−1 at pedestrian 
level; see sidebar “UTCI 
and mean radiant tem-
perature Tmr t”]. Within 
cities, the wind-tunnel ef-
fect can greatly increase 
wind speed. As a rule of 
thumb, in the local climate 
zones of typical Dutch cit-
ies, a windy spot would 
be equivalent to the rural 
wind speed at pedestrian 
level (Bottema 1993).

The above approach is 
sufficient to provide a ther-
mal comfort range only 
(through the four location 
pictograms in Fig. 1)—that 
is, for a sunny and calm 
environment, a sunny and 
w i ndy env i ron ment ,  a 
shaded and calm environ
ment, and a shaded and 
windy environment. As 
a consequence, the broad 
thermal range forecast rep-
resents the outer extremes 
for the thermal condition within the vicinity of the 
location. It does not present a normal distribution, 

Fig. 4. (top four rows) Afternoon (1200–1500 UTC) thermal stress 
forecasts (+3-h lead) and measurements (in percentage of time)  
at four locations around the rural Wageningen University weather sta-
tion and (bottom) a location based on minimization of thermal stress by 
always choosing the best forecast out of the top four locations (September 
2011–September 2015).
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(Heusinkveld et al. 2014). The nocturnal differences 
between urban and rural areas can be much larger 
and can be accounted for using high-resolution 
mesoscale models or by using a statistical down-
scaling model with a validated scaling framework 
(Theeuwes et al. 2017). Based on rural weather data, 
their scaling predicts the maximum UHI during the 
diurnal cycle. Next, the maximum UHI is scaled 
toward hourly values using the typical diurnal UHI 
cycle (Oke 1982).

The app forecast has been validated for all four 
possible microclimatic conditions (see examples 
in Fig. 1) at the rural Wageningen weather station. 
Within the 5-yr evaluation period, only 7 days were 
subject to missing data, and a nearby weather station 
provided data to fill the gaps (notably, days mostly 
without thermal stress). The forecast results appear to 
be better for cold stress classes because of the broader 
spacing of the classes on the cold side of the scale. 
Moreover, winter-season months have a relatively 
short daylight period, and thus direct radiation be-
comes a less important factor (Fig. 4).

For the statistical forecast evaluation, a multiclass 
contingency table was constructed. The Gandin–
Murphy skill score (GMSS) was selected because 
this score can deal with more than two classes and 
weighs the model score for rare events relatively 
more strongly than for frequent events (Gandin 
and Murphy 1992). A score of 1 represents a perfect 
forecast, whereas 0 represents a random forecast 
(see sidebar “The Gandin–Murphy skill score”). In 
the Netherlands, only seven UTCI classes have been 
observed, and the extremes represent a very low fre-
quency (Table 1). To have reliable statistics, the seven 

wind speeds that are lower than at the rural weather 
station location. Measurement surveys using a mete-
orological-station-equipped bicycle revealed that the 
forecast of the UTCI is within the spatial range of the 
UTCI measurements around that forecast location 
(Heusinkveld et al. 2010).

The location-specific forecast can be interpreted 
along the color bar (Fig. 1). For a windy spot, the 
app user should look at the symbols on the left side, 
whereas for a wind-protected location, the user should 
look to the right side (Fig. 1). Note that the sun–moon 
symbol is representative of a more open sky, and dur-
ing the night this can shift the sun–moon symbol 
below the cloud symbol (because of stronger thermal 
radiative heat loss to the sky).

Here we focus on the maximum stress class during 
daytime (1200–1500 UTC; time in the Netherlands is 
UTC plus 2 h in summer) and used a 4-yr evaluation 
of the forecast (Fig. 4). Obviously this time window 
greatly reduces the cold stress hours. We found that 
the majority of the daytime observations were in the 
“no thermal stress” class for the two low-wind catego-
ries. In the windy locations (Figs. 4a,b), the data were 
more skewed toward the cold side (compared with 
Figs. 4c,d). Strong heat stress occurs 5.5% of the time 
under wind-protected and sunny conditions (Fig. 4c, 
equivalent to 20 days yr−1).

The histograms of wind-protected and sunny (Fig. 
4c) and wind-protected and shaded locations (Fig. 4d) 
illustrate the impact of shading: it increases cold and 
reduces heat stress. This information can be used for 
behavioral thermoregulation, such as moving to a 
shady or windy spot if thermal conditions get too hot. 
Similarly, for cold stress, one would move to a sunny 
or calm spot. This adaptation strategy appears very 
effective, since by taking these interventions, thermal 
stress-free conditions are achieved in more than 90% 
of the cases or afternoons (Fig. 4e). We have assumed 
ideal cases, but in reality the windy location may be 
too far away, or the nearest shaded spot may have a 
higher amount of solar reflection or thermal emission 
from nearby surfaces that were not accounted for. 
Note that the frequency of hours with heat stress will 
roughly double in 2050 as compared to present-day 
climate (Molenaar et al. 2016).

For a windy and shaded location, there are almost 
no heat stress issues for the Netherlands. However, 
the situation differs within an urban environment 
where the daytime UHI may increase thermal stress 
levels. Measurements showed up to a 2-K increase for 
Rotterdam during daytime hot summer conditions 

Fig. 5. Gandin–Murphy skill scores for a forecast of 
cold, neutral, or heat stress at four locations between 
1200 and 1500 UTC (September 2011–September 
2015).
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Table 1. Contingency table for all thermal stress classes in Wageningen, Netherlands, for a windy and sunny 
location, number of afternoons (between 1200–1500 UTC 15 September 2011–15 September 2015; +3-h lead 
time). The sum rows represent the sum of cold, neutral, or heat stress classes. For example, the sum of the 
dark gray area (7) represents the observed cases of neutral conditions where heat stress was forecast.

	 Strong cold stress	 7	 7	 0	 0	 0	 0	 0

	 Moderate cold stress	 5	 221	 42	 0	 0	 0	 0

	 Slight cold stress	 0	 41	 282	 41	 0	 0	 0

	 Sum		  605		  41		  0

	 No thermal stress	 0	 0	 41	 567	 68	 0	 0

	 Sum		  41		  567		  68

	 Moderate heat stress	 0	 0	 0	 7	 98	 10	 0

	 Strong heat stress	 0	 0	 0	 0	 3	 20	 1

	 Very strong heat stress	 0	 0	 0	 0	 0	 0	 0

	 Sum		  0		  7		  132
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THE GANDIN–MURPHY SKILL SCORE

Forecasts of weather events that occur infrequently (e.g., 
tornadoes, fog, and extreme precipitation) are usually 

evaluated using skill scores that are based on contingency 
tables in which combinations of correct forecasts and incor-
rect forecasts are recorded (Table 1). From the contingency 
table, skill scores like the hit rate, false-alarm rate, and 
critical success index have been well established for bimodal 
conditions for the forecasts and observations. However, for 
forecasts and observations that are organized in more than 
two categories, as in the app that uses multiple categories 
for human thermal comfort, a two-dimensional contingency 
table and its skill scores are not applicable. For multiple class 

forecasts, it is required that misses are scored analogous 
to single-class forecasts, though a skill score should prefer-
ably also account for the distance to the observed values 
and reward correct forecasts and penalize incorrect ones. 
Therefore, the Gandin–Murphy skill score (GMSS) was in-
troduced. The GMSS first defines score weights for all avail-
able classes based on the sample climatology of the phenom-
enon of concern. Subsequently, these weights are applied to 
the joint probability of occurrence of each forecast–obser-
vation combination in the contingency table. As such, more 
credit is given to the correct forecast of rare events and less 
credit to correct forecasts of common events (Wilks 2006).
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classes were regrouped into three categories—namely, 
cold stress, neutral, or heat stress (Table 1; see sum-
mation boxes). GMSSs are best (>0.84) for cases with 
shaded conditions (Fig. 5). Cloud cover appears to be 
more difficult to forecast than wind speed. This cloud 
cover issue is also evident in Table 1, which shows that 
the forecast has a cold bias in the heat stress classes 
only. The cold stress classes are dominated by wind 
effects, whereas the heat stress classes are dominated 
by radiation (and possibly related to seasonal changes 
in solar altitude). Note that a forecast lead time of 39 h 
reduces the GMSS only slightly.

One may also wonder what happens if only a rural 
UTCI forecast is used for all nearby microclimates. 
For a wind-protected location without shading, 
the rural UTCI forecast will underestimate heat 
stress, and this is clearly reflected in the GMSS; it 
drops from 0.70 to 0.47. For a shaded but not wind-
protected location, the GMSS drops from 0.90 to 
0.80. Surprisingly, for a shaded and wind-protected 
location, the score drops from 0.80 to 0.77 only. This 
is because of the categorization of GMSS in three 
groups. Overall, the added value of site-specific 
forecasts is significant.

In this paper we have introduced an app for fore-
casts of human thermal comfort and illustrated its 
performance for the Netherlands. We anticipate that 
future developments would benefit from increasingly 
improving geoinformation and higher-resolution 
weather forecasts (e.g., Ronda et al. 2017). Hopefully, 
readers are inspired to introduce similar apps for their 
environments and possibly link them to health risks 
caused by hypothermia, hyperthermia, air quality, 
and other effects (e.g., Steeneveld et al. 2017). The app 
was released in summer 2015 in the Netherlands and 
became very popular during the hot summer weather 
conditions. This is reflected in the number of users 
and forecast requests (around 300,000) during the 
first 2 weeks of operation.

In coming back to our initial question, yes, go 
ahead and find shade to avoid a strong heat stress 
class with the new tool at hand!
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This new online directory, which will 
replace the former BAMS Professional 
Directory, will list an array of weather and 
climate service providers. You can find the 
new directory under the “Find an Expert” 
link from the AMS home page. 

It’s easier than ever for the weather,
water, and climate community and 
the general public to search for 
organizations and individuals offering these 
important services. 

Learn more at www.ametsoc.org
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