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A diagnostic equation for the daily maximum urban heat
island effect for cities in northwestern Europe
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ABSTRACT: The urban heat island (UHI) effect, defined as the air temperature difference between the urban canyon and the
nearby rural area, is investigated. Because not all cities around the world are equipped with an extensive measurement network,
a need exists for a relatively straightforward equation for the UHI effect. Here, we derive a simple, diagnostic equation for the
UHI using dimensional analysis. This equation provides a first-order estimation of the daily maximum UHI based on routine
meteorological observations and straightforward urban morphological properties. The equation is tested for 14 cities across
northwestern Europe and appears to be robust. The comprehensiveness of this analytical equation allows for applications
beyond urban meteorological studies.
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1. Introduction

The best known phenomenon resulting from the difference
in urban and rural microclimates is the urban heat island
effect (UHI). Here, the UHI is defined as the difference in
air temperature between the urban street canyon and the
rural environment, and is largest during the evening and
night-time, typically in the order of ∼6 K during calm, fair
weather conditions in northwestern Europe (Steeneveld
et al., 2011). In general, the UHI is induced by energy
balance differences between land use types (Oke, 1982).
Urban areas as a whole have a relatively low albedo and
a relatively large heat storage in the urban fabric dur-
ing daytime and subsequent release during the night. The
released energy via thermal radiation is generally effi-
ciently trapped in the urban canyons. In addition, extra heat
release as a result of human activities and less evapotran-
spiration due to the lack of vegetation compared to the rural
surroundings all lead to higher temperatures in urban areas.
Consequently, the UHI generally depends on urban char-
acteristics, such as street geometry and urban vegetation
fraction.

Apart from the urban morphological properties, the loca-
tion and climate of the city surroundings and meteoro-
logical conditions play important roles in determining the
UHI magnitude as well. Because of the myriad of pro-
cesses governing the urban climate, there have been only a
few attempts to find a diagnostic equation to estimate the
UHI within the urban canopy (Arnfield, 2003). However,
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research and operational activities in urban design, health
studies and energy demand planning may benefit from reli-
able UHI estimates using these types of straightforward
equations.

The UHI undergoes a diurnal cycle (Oke, 1982); during
the morning and early-afternoon, the UHI is smallest and
can become negative in some cases (Morris et al., 2001;
Theeuwes et al., 2015). However, at the end of the after-
noon, the incoming solar radiation decreases and both the
urban and the rural environments cool. The urban area
retains more heat and cools slower than the rural surround-
ings, causing the UHI to reach a maximum during the
evening or night.

The maximum observed UHI (UHImax =max(Turban −
T rural)) has been positively (and occasionally negatively)
related to the aspect ratio or sky-view factor (e.g. Oke,
1981; Eliasson, 1996; Marciotto et al., 2010; Theeuwes
et al., 2014), negatively related to vegetation (e.g. Dimoudi
and Nikolopoulou, 2003; Steeneveld et al., 2011; Petralli
et al., 2014) and negatively related to cloud cover and
wind speed (i.e. Ackerman, 1985; Kidder and Essen-
wanger, 1995; Morris et al., 2001). Nowadays, the UHI
is often successfully modelled with sophisticated atmo-
spheric mesoscale models coupled to an urban canopy or
building energy model (e.g. Chen et al., 2011; Salamanca
et al., 2011; Kusaka et al., 2012). However, these models
still take a substantial amount of computing time and are
not easy to use for non-experts. In addition, they require
a large amount of input parameters and initialisation data
that are often not available or uncertain. Alternatively, sta-
tistical models have been utilized, usually linear regression
(i.e. Bottyán and Unger, 2003; Hoffmann et al., 2012; Szy-
manowski and Kryza, 2012). These methods are relatively

© 2016 Royal Meteorological Society



444 N. E. THEEUWES et al.

straightforward and easy to use, but not purely physically
based and require retuning for each city.

Alternatively, in this research, we present a physically
based equation to diagnose a typical UHImax at street
level for various urban locations and weather types in
northwestern Europe. A novel aspect of our approach is
the application of the well-established method of dimen-
sional analysis (Buckingham, 1914; Langhaar, 1951) for
the application in urban meteorology. Previous scaling
approaches have been attempted by Summers (1964), Oke
and East (1971), Oke (1998), Hidalgo et al. (2010), and
Lee et al. (2014). Most of these scalings are based on
variables that are relatively difficult to measure, such as
the boundary-layer height and the surface sensible heat
flux in urban and rural locations, thus are difficult to apply
to most cities.

The diagnostic equation of this study is based on routine,
rural weather observations and basic city characteristics
that should be easily accessible (Section 2). An analysis
to identify the meteorological variables essential for the
estimation of the UHImax similar to Oke (1998) is given in
Section 3. The diagnostic equation is derived (Section 4)
and subsequently evaluated (Section 5) with observations
from other weather stations from hobby meteorologists in
northwestern Europe and for a wide range of city sizes
(Section 6). The final goal is to provide non-experts with a
tool to make a first-order estimate of UHImax.

2. Observations

Routine temperature measurements in urban areas are still
scarce, because the complex terrain causes issues concern-
ing representativeness, maintenance and vandalism. How-
ever, many hobby meteorologists measure temperatures
within cities. These observations have been used before
to analyse the UHI in various cities in the Netherlands
by Steeneveld et al. (2011) and Wolters and Brandsma
(2012). These have been found to be very valuable after
careful screening. In order to quantify the extremity of
the observations of UHImax, the observations were fit
through a generalized extreme value distribution (GEV)
as in Steeneveld et al. (2011). Stations for which the data
showed a large deviation from the GEV curve were not
used in the analysis. Deviation from the GEV curve might
mean that the weather station has been moved or been
indoors for a period of time.

Here, we use 11 hobby meteorology stations across
northwestern Europe to derive and evaluate the equation
for the UHImax (Table 1). These stations have been selected
for a measurement height of around 1.50 m above the
surface; no roof stations were considered. Most of these
stations are Davis Vantage pro 2 stations with active 24-h
ventilation and have a very low bias (0.2 K) according to
Bell et al. (2015). The Alecto stations also have active
ventilation, whereas the Cresta and La Crosse stations are
naturally ventilated.

Two additional stations are located in Wageningen and in
Amsterdam, and consist of Davis solar powered, ventilated
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DIAGNOSTIC EQUATION FOR THE URBAN HEAT ISLAND 445

Figure 1. The locations of the different measurement stations, the red, closed dots indicate measurement stations in urban areas and the green, crossed
dots in rural areas. The abbreviations of the city names can be found in Table 1. Abbreviations for the countries are shown in grey.

radiation screens, and Decagon VP-30 temperature and
humidity sensors with a Decagon EM50G logger. Note
that the screens are the same as those of the Davis Van-
tage Pro 2 weather station, but are only ventilated when
the solar panels receive direct incoming radiation. The
construction consists of an east facing and a westward
facing solar panel, specially designed to collect inside
the urban canyon. These stations have been attached to
lampposts at a height of 3 m in Wageningen and 4 m in
Amsterdam.

Finally, the weather station set-up in Birmingham is
a Vaisala WXT520 weather transmitter sampling every
15 s using SDI-12 protocol logging 1-min averages. The
measurement height is around 3 m above the surface. For
more information about the Birmingham measurement
network, see Chapman et al. (2015).

Table 1 summarizes the characteristics of each urban
station. The vegetation fraction within a 500-m radius of
the urban weather stations vary, but is below 0.40 for all
stations. The local climate zones (LCZ; Stewart and Oke,
2012) are mostly compact and open mid- and low-rise.
Finally, the sky view factor (SVF) varies between 0.23 and
0.84.

In order to compute an UHImax and quantify the
meteorological variables, observations from rural areas
surrounding the city are also needed. Therefore, obser-
vations of temperature, wind, solar radiation, rain and
relative humidity in the Netherlands are provided by the
Dutch National Weather Service and the United Kingdom
Met Office (Figure 1). These measurement stations are
located at airports (except Hoogeveen and De Bilt) over
a grass surface (LCZ D, low plants), in accordance with
World Meteorological Organization (WMO) standards.
Data from Wageningen were compared to the meteo-
rological station ‘Veenkampen’ (51.981∘N, 5.622∘E)
maintained by Wageningen University and also located
over grass surface. For the cities in France and Germany,
data from the European Fluxes Database Cluster are used.
The rural reference station of Köln was located near Jülich

above cropland. A flux station near Grignon was used for
computing the UHI in Paris and Palaiseau (Figure 1). This
station was also located over a crop surface and was used
previously by Lehuger et al. (2010).

For the analysis, some weather phenomena need to be
accounted for. These events can cause differences in the
urban and rural temperatures not related to the UHI (Fortu-
niak et al., 2006). In order to exclude frontal systems, rain
events (daily sum > 0.3 mm) and sudden changes in the
wind speed (wind speed changes >2 ms− 1 per hour) have
been excluded. Finally, for fog events, days with averaged
relative humidity > 80% have been excluded. Excluding
these days leaves between 25 and 40% of the data for fur-
ther analysis. While performing the dimensional analysis,
heating degree days of more than 17 have been excluded
(base temperature is 18 ∘C) in order to exclude the largest
anthropogenic heat fluxes.

3. Selecting variables

For designing a diagnostic equation of the UHImax, it is
essential to select the variables that impact the UHImax
most and are physically based. The rural temperature is
mainly dependent on weather conditions; night-time cool-
ing is determined by wind and cloud cover with maximum
cooling under low winds and clear skies. In addition, we
may expect that the UHImax depends on the energy stored
in the urban canopy during daytime by solar radiation. As
such, we can postulate the following variables (Table 2)
(urban-related variables will be introduced later):

• S↓ [K ms− 1]: the incoming shortwave radiation as aver-
aged over the day at the rural site, to indicate the energy
entering the system (e.g. Ackerman, 1985; Kidder and
Essenwanger, 1995; Morris et al., 2001). We express S↓

in kinematic units [K ms− 1], so the amount of incom-
ing radiation in Wm− 2 divided by the air density and
specific heat capacity (𝜌Cp)

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 443–454 (2017)
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Table 2. Information about the selected variables for the analysis.

Variable Time (local time) Description

UHImax Day 0, 0800–day 1, 0700 max(Turban −Trural) from 1-h average data
S↓ Day 0, 0100–day 1, 0000 Sum of the shortwave incoming radiation from 1-h maxima in

rural area divided by 24 h
U Day 0, 0800–day 1, 0700 Average wind speed at 10 m from 1-h averages in rural area
Davg Day 0, 0800–day 1, 0700 Average wind direction at 10 m from 1-h averages in rural area
DTR Day 0, 0800–day 1, 0700 Difference between the maximum and minimum temperature in

rural area
ΔT
Δz

Day 0, 1700–day 1, 0700
min(T1.5m)−min(T10cm)

1.5−0.1
Difference between the minimum rural

temperature at 1.5 m and at 10 cm in rural area
Rsum Day 0, 0100–day 1, 000 The total sum of rain from one-h averages in rural area
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Figure 2. The observed UHImax against (a) the diurnally averaged incoming shortwave radiation, (b) the diurnal temperature range, (c) the diurnally
averaged wind speed at 10 m and (d) the temperature gradient close to the ground, all at the rural location, for the station in Hoogeveen. The colours
indicate the magnitude of other variables, green in (a) is the wind speed, red in (b) and (d) is the incoming shortwave radiation and blue in (c) is the
diurnal temperature range. The grey lines in the upper-left corner indicate the measurement error based on the instrument uncertainty. The data with

rain (Rsum > 0.3 mm) and fog (relative humidity > 80%) have been excluded.

• DTR [K]: the diurnal temperature range at the rural site
(Tmax − Tmin), to introduce a measure for the cooling
potential during the night outside the city (e.g. Gallo
et al., 1996; Holmer et al., 2013). A higher diurnal tem-
perature range indicates that lower night-time tempera-
tures can be reached at the rural site and thus a higher
UHImax.

• Uavg [ms− 1]: the 24 h average 10-m wind speed during
the day and night at the rural site (e.g. Ackerman,
1985; Kidder and Essenwanger, 1995; Morris et al.,
2001). A stronger wind speed will mix horizontal and

vertical temperature differences more effectively and
will decrease the UHImax.

• ΔT
Δz

[K m− 1]: the maximum temperature gradient (in this
study between 2 m and 10 cm) close to the ground at
night at the rural site acts as a measure for stability
during the night (e.g. Lee, 1979; Baik et al., 2007; Hu
et al., 2013). This variable could be included as an
alternative to the diurnal temperature range (DTR).

Figure 2 shows these four variables and their relation to
the measured daily maximum UHI (UHImax) for an urban

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 443–454 (2017)
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station (Hoogeveen). This location was selected because
it is not located on the edge of the city and has very
little influence of mesoscale flows, due to orography or
proximity to the sea and ideally located to answer our
research question.

As expected, the incoming shortwave radiation has
a positive relation with the UHImax (Figure 2(a)), con-
sistent with Steeneveld et al. (2011). Note that S↓ is
both influenced by clouds and the season since we anal-
yse data at mid-latitude locations. An increase in the
energy entering the urban canopy increases the heat
that is released during the night from the urban fabric,
elevating the temperature difference between the urban
and rural environment. Generally, the difference in wind
speed explains the large scatter in the relation between
S↓ and UHImax.

As shown in Figure 2(b), the diurnal temperature range
is positively correlated with UHImax. The DTR has been
successfully related to the urban and rural cooling rate by
Holmer et al. (2013). If the rural environment becomes
more stable, the minimum temperature is able to reach a
lower value and the DTR increases. The night-time urban
temperature does not decrease as much as the rural tem-
perature, causing a large UHImax under stable conditions
with a high DTR. Figure 2(b) also shows that the large
DTR is also closely related to the incoming shortwave
radiation. This can be explained, because during clear
sky days, the maximum (and minimum) temperature can
reach much higher (and lower) values than during cloudy
days (and nights).

The wind speed appears to be negatively correlated with
the UHImax (Figure 2(c)), as many other studies have
shown before (e.g. Ackerman, 1985; Park, 1986; Kid-
der and Essenwanger, 1995; Morris et al., 2001). The
increased wind speed leads to more mixing, both in the
vertical and the horizontal direction. A higher wind speed
leads to more vertical mixing and in the horizontal direc-
tion and a reduction in the stability of the rural environ-
ment. As the urban environment stays neutral or slightly
unstable, an enhanced wind speed usually leads to a lower
UHImax as well. In addition, enhanced mixing between
the rural and urban environment, local advection, reduces
the UHImax. Overall, the figures indicate that both the
wind speed and diurnal temperature range will need to be
included in the equation.

Finally, we also explore the vertical temperature gra-
dient ΔT

Δz
in the rural area near the surface, which is

another measure of the atmospheric stability in the
rural environment. This variable is positively related
to the UHImax (Figure 2(d)). When near surface atmo-
spheric stratification develops, turbulence is suppressed,
decreasing the sensible heat flux, leading to a lower
rural temperature (Steeneveld et al., 2006). On the other
hand, the air in urban areas mostly remains relatively
well mixed, due to night-time heat release, thus limit-
ing urban cooling. As a result, a more stable rural area
increases the urban–rural temperature difference and
UHImax. This variable is shown to be more indepen-
dent of the shortwave incoming radiation, because the

maximum temperature gradient is mainly governed by
the nocturnal state of the atmosphere. The tempera-
ture gradient–UHImax relation can be improved with the
inclusion of incoming radiation, although the final result is
not as evident compared to the DTR. Another disadvantage
of ΔT

Δz
is that it is not routinely observed outside of the

Netherlands.

4. Designing equations

In this section, a diagnostic equation will be derived for
the UHImax from the meteorological variables described in
the previous section. Therefore, the technique of dimen-
sional analysis (Buckingham, 1914; Langhaar, 1951) is
used, similar to the approach used by Steeneveld et al.
(2007) and Hidalgo et al. (2010). Dimensional analysis is
a method used to find a physically meaningful equation
between variables based on their fundamental dimen-
sions (e.g. time, length, mass). This technique has been
proven to be very valuable in atmospheric sciences, for
instance, Monin–Obukhov Similarity theory has provided
the widely known flux profile relations that were devel-
oped using dimensional analysis (Businger et al., 1971;
Dyer, 1974).

Using Buckingham’s 𝛱 theorem (Buckingham, 1914;
Langhaar, 1951), dimensionless groups can be formulated
with the variables as described above. For example, if
only the variables UHImax, S↓, DTR and U are used, the
following dimensionless groups can be constructed (see
Appendix for the formal derivation):

𝛱1 =
UHImax

DTR
(1)

𝛱2 = S↓

U · DTR
(2)

Subsequently, a functional form between 𝛱1 and 𝛱2
is derived using observations, describing the relationship
between these two groups. The two dimensionless groups
are plotted as a function of each other in Figure 3(a). Note
that 𝛱1 and 𝛱2 have the DTR as a common variable, this
may lead to self-correlation (Baas et al., 2006) and will be
discussed in Section 7. The function that can be fit through
the Hoogeveen data is:

𝛱2 = c1 ·𝛱𝜆

1 (3)

Here, c1 is a constant specific for the Hoogeveen data set
and 𝜆 the exponent to be fit through the data. The equation
can be rewritten as:

UHImax

DTR
= a1

(
S↓

U · DTR

) 1
𝜆

(4)

Here, a1 is a constant and a transformation of c1: a1 =
𝜆

√
1
c1

. The constant a1 relates to urban properties different
for each city and surface properties differences within the
city. In Section 6, a function for a1 will be derived using
urban properties important for cities in North Western
Europe.

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 443–454 (2017)
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(a) (b)

T zL
UHImax

UHImax

Figure 3. Two dimensionless groups plotted as a function of each other with data for the station in Hoogeveen. (a) Dimensionless groups derived
in Equations (1) and (2) with trend lines of the functions y= c1 · x4 (black) and y= c2 · x (grey). (b) Dimensionless groups derived in Equations (8)
and (9) with a trend line of the function y= c3 · x. The grey lines in the upper-right and lower-left corners indicate the measurement error based on
the instrument uncertainty. The data with rain (Rsum > 0.3 mm), fog (relative humidity > 80%) and heating degree days higher than 17 have been

excluded (base= 18 ∘C).

In Figure 3(a), two functions are shown and their fit
through the Hoogeveen data, one with 𝜆= 4 and one with
𝜆= 1. Rewriting Equation (4) to make UHImax explicit
with 𝜆= 4, we find:

UHImax = a1
4

√
S↓DTR3

U
(5)

On the other hand, rewriting Equation (4) for UHImax
with 𝜆= 1 causes the DTR to cancel out and results in the
following equation:

UHImax =
a2S↓

U
(6)

Different values of 𝜆 have been tested. The 𝜆 with the
lowest root mean squared error (RMSE) was 3.6, however
the error for 𝜆= 4 was only slightly larger; for 𝜆= 3.6, the
RMSE= 0.56 K compared to a RMSE= 0.63 for 𝜆= 4.

In a similar manner, dimensional analysis can be per-
formed with another combination of variables such as:
UHImax, S↓, ΔT

Δz
, U and a length scale L. Then Bucking-

ham’s 𝛱 theorem states that two dimensionless groups
can be formed, 5 variables − 3 dimensions [(K), (m) and
(s)]= 2 groups.

Here, L (m) is chosen to be a horizontal length scale
that could describe the distance of the city to a large water
body and the distance from the station to the edge of the
city. The location of the city with respect to the sea may
be important to incorporate considering mesoscale effects
bringing local advection of moisture and temperature into
the city. These aspects are secondarily included in the DTR
in Equation (5). In addition, the size of the city and the
location of interest within the city are important to rep-
resent potential local advection and fetch length over the

urban terrain. Therefore, a second length scale can be used
to quantify the distance the wind travels over the city. The
idea to formulate a length scale in this manner is widely
used in the modelling of the nocturnal boundary layer (i.e.
Blackadar, 1962; Delage, 1974), where the mixing length
is formulated analogously, ensuring a smooth transition of
the two length scales using inverse interpolation of the two
individual length scales.

1
L
= 1

Lcityedge
+ 1

Lwater
(7)

In Equation (7), Lcityedge is the distance from the city
measurement station to the edge of the city and Lwater is
the distance to a large water body, dependent on the wind
direction. Therefore, as the wind direction changes, the
distance to the edge of the city or to a large water body
changes as well. A large water body has diameter larger
than the distance from the shoreline to the urban weather
station. Being close to the sea decreases L. For a location
far inland, the last term in Equation (7) becomes negligible
and only Lcityedge contributes, creating a physically realistic
variable to be related to UHImax

Using these variables, the two following dimensionless
groups can be formed:

𝛱3 =
UHImax

ΔT
Δz

L
, (8)

𝛱4 = S↓

U · UHImax
(9)

The data for Hoogeveen shows that these two dimension-
less group can be linearly related (Figure 3(b)):

𝛱4 = c3 ·𝛱3 (10)
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Table 3. The best fit of constant ai (based on the MEAE) fitted
for one half of the data set and the root mean squared error and

the median absolute error for the second half of the data set.

Equation City ai best fit RMSE (K) MEAE (K)

5 Hoogeveen 0.97 0.75 0.52
5 Nijmegen 1.26 0.98 0.65
6 Hoogeveen 35.9 0.89 0.62
6 Nijmegen 51.5 1.61 1.08
11 Hoogeveen 0.20 0.82 0.54
11 Nijmegen 0.18 1.40 0.87

Rewriting this equation for UHImax gives the following
equation:

UHImax = a3

√
S↓ ΔT

Δz
L

U
(11)

In Equations (5), (6) and (11), the ai denote constants
specific to each data set. Table 3 shows the best fit of ai
for each of the above mentioned equations. The data set
was randomly split in two, i.e. a statistically independent
calibration and validation data set. With this approach, we
randomly exclude time-dependent errors (e.g. seasonality,
minor changes in urban configuration and changes in veg-
etation). The values of ai were determined with the cali-
bration data set.

5. Evaluating the equations

Figure 4 shows the result of the three equations for the vali-
dation data set from two cities (Hoogeveen and Nijmegen).
The trend lines show the best linear fit [based on the
median absolute error (MEAE)] for ai, and Table 3 shows
the slope (ai), the RMSE and MEAE for each of the
equations.

Equation (5) shows a very close correspondence to the
observed UHImax (Figure 4(a)). For Hoogeveen, the rela-
tion performs slightly better than for Nijmegen, an RMSE
of 0.75 K compared to an RMSE of 0.98 K. Given the
instrument uncertainty displayed in the error bars, the dif-
ference in the RMSE is only minor. However, the overall
performance of this equation is very good compared to
the other two equations, that have RMSE’s of 0.89 K ver-
sus 1.61 K and 0.82 K versus 1.40 K for Hoogeveen and
Nijmegen.

Figure 4(b) displays the measured UHImax with the result
of Equation (6). When the UHImax is higher than 3 K, it is
increasingly underestimated, which seems to be caused by
the wind speed. The key difference between this equation
and Equations (5) and (11) is the relation between UHImax
and U is not a root function. Morris et al. (2001) found
that the UHImax could be best fitted with the fourth root
function of U, as represented in Equation (5). In addition,
the difference in the performance between Hoogeveen
and Nijmegen is considerably large, RMSE= 0.89 K for
Hoogeveen and 1.61 K for Nijmegen. This may indicate
that in Nijmegen not all the relevant processes appear to
be taken into account with this equation.

(a)

(b)

(c)

S ↓ Δ T
Δ z L

U

4 S↓ DT R 3

U

S ↓

U

U
H
I m

ax
U
H
I m

ax
U
H
I m

ax

Figure 4. The observed UHImax against the results from the three differ-
ent equations: (a) Equation (5), (b) Equation (6) and (c) Equation (11).
The red dots show data for the station in Hoogeveen and the blue dia-
monds for Nijmegen. The trend lines are given for the best fit for half
of the data set of each station, solid lines are for Hoogeveen and dashed
lines for Nijmegen. The RMSE and MEAE are given in Table 3. The grey
lines in the upper-right corner indicate the measurement error based on
the instrument uncertainty. The data with rain (Rsum > 0.3 mm) and fog

(relative humidity > 80%) have been excluded.

As shown in Figure 4(c), model estimates with
Equation (11) show a clear correlation with UHImax.
In Hoogeveen, the equation again complies better with
the observations than in Nijmegen, RMSE of 0.82 K
versus 1.40 K. In both cities, the equation underestimates
observed UHImax lower than 3–4 K, and overestimates
the UHI above 3–4 K. We clearly identify the effect of
variable L in this equation. The constant a3 that is best
suited for the Nijmegen data (a3 = 0.18) is close to the a3
best fit for the Hoogeveen data (a3 = 0.20).

Overall, Equation (5) best represents UHImax for both
Hoogeveen and Nijmegen. Therefore, in the remainder
of this study, Equation (5) is used to estimate UHImax.
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(a) (b)

(c) (d)

Figure 5. The best fit for a1 for the first half of each of the city’s data set against different urban characteristics: (a) vegetation fraction in a radius of
500 m around the urban measurement station, (b) sky-view factor, (c) population density of the city and (d) and the length scale from Equation (7).
The abbreviations of the city names can be found in Table 1 and the grey lines indicate the error bars estimated from the uncertainty in the estimation

of the urban properties and confidence in estimating a1.

In order to make this equation applicable to other cities,
we expect a1 to be a function of urban morphological
properties.

6. Application to other cities

The next step is to evaluate the performance of the diagnos-
tic Equation (5) for other cities and to include urban mor-
phological properties important for the estimation of the
UHImax. In order to quantify this effect, Figure 5 shows the
dependence of a1 in Equation (5) on various urban proper-
ties: the vegetation fraction in a radius of 500 m around the
urban weather station, the sky-view factor at the stations
location, estimated from the building heights and street
width, the population density of the chosen city and the
average horizontal length scale L (Section 4, Equation (7)).

Here, a1 shows the best relation with the sky-view factor
at the location of the station (Figure 5(b)). The vegeta-
tion fraction in a 500-m radius also shows a clear rela-
tionship with a1 (Figure 5(a)), as well as the population

density (Figure 5(c)), in line with previous research (e.g.
Oke, 1981; Steeneveld et al., 2011). However, the distri-
bution of the population density is insufficient in order to
concretely relate to a1. The length scale L appears not to
be convincingly related with a1 and is not considered to
be a meaningful parameter for further analysis. The rela-
tion between the UHI and vegetation fraction was tested
for several radii, and 500 m showed the most convincing
result.

Given the findings, we use the vegetation fraction and
sky-view factor to represent a1. Because both variables
show a linear relation to a1, a multiple linear regres-
sion method is applied to find the relation between the
sky-view factor and vegetation and a1. This results in an
equation: a1 = 1.94− 0.93 · SVF − 0.88 · f veg that we sim-
plify to (Figure (6)):

a1 = 2 − SVF − fveg (12)

recognizing the large error bars in the coefficients.
With this rounding-off approximation, the MEAE of a1
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Figure 6. The best fit for a1 for the first half of each of the city’s data
set against Equation (12). The solid line indicates the function y= x. The
abbreviations of the city names can be found in Table 1 and the grey lines
indicate the error bars estimated from the uncertainty in the estimation

of the urban properties and confidence in estimating a1.

increases from 0.024 to 0.042 K (from ∼2 to ∼3%) and
remains very small.

The quantification of a1 results in the following diagnos-
tic equation for the daily maximum UHI:

UHImax =
(
2 − SVF − fveg

) 4

√
S↓DTR3

U
(13)

This formula is derived and therefore valid for
0< f veg < 0.4 and 0.2< SVF < 0.9. Note that in the
limit of f veg and SVF going to 1, a1 is zero and the UHImax
will vanish, as can be physically expected. U is limited to
values higher than 0.5 ms− 1, however the cup anemome-
ters used in the Dutch rural stations are unreliable with
wind speeds lower than 1 ms− 1.

Figure 7 shows the performance of Equation (13) for
the validation data set of each city in Table 1. Gener-
ally, the new equation performs reasonably well given
its simplicity, with an RMSE of 0.91 K and a MEAE of
only 0.58 K.

7. Discussion

In this study, a new diagnostic equation to estimate the
UHImax has been presented. Here, we discuss the main
observational and methodological uncertainties and we
will synthesize the current findings in the literature.

There have been previous attempts to scale the UHI
using a simple equation. Summers (1964) suggested using
the atmospheric boundary-layer height and the potential
temperature gradient above the boundary layer to estimate
the UHI in Montreal, Canada (Oke and East, 1971).
However, the application of such an equation is difficult
because vertical profiles are not routinely measured in

Figure 7. The observed UHImax against the predicted UHImax using
Equation (13) for all stations. The solid line is the one-to-one line. The
grey lines in the upper-right corner indicate the error bars estimated from
the measurement (instrument) and model uncertainty. The data occur
from sunset to 5 h after sunset, and data with rain (Rsum > 0.3 mm) and

fog (relative humidity > 80%) have been excluded.

most parts of the world, and where available are typically
limited to once or twice a day.

Hidalgo et al. (2010) proposed to use the difference in
the sensible heat flux between the rural and urban sur-
face and the boundary-layer height to scale the UHI using
numerical experiments. From an observational perspec-
tive, both boundary-layer height and surface heat fluxes are
not routinely measured at WMO weather stations. Further-
more, energy balance measurements have additional issues
dependent on the measurement technique and the instru-
ment’s footprint. Similarly, Lee et al. (2014) estimated the
time-dependent UHI with the difference in sensible heat
flux, the wind and a length scale of the city. Note that none
of these studies use any urban morphology parameters,
such as a measure for vegetation cover, building density or
materials, whereas the current study does. Moreover, the
diagnostic equation derived here only uses routine mete-
orological measurements, such as 10-m wind speed, solar
radiation and 1.5-m temperature.

Alternatively, Oke (1998) and Runnalls and Oke (2000)
developed a model for the diurnal cycle of the UHI. Their
model is based on a weather factor depending on cloud
fraction and cloud type, and the wind speed to the power
of − 1/2. However, our results indicate that a dependence
of UHImax to the wind speed with a power of − 1/2 does
not correspond to the current observations (Figure 5(c)). In
that case, the model overestimates UHImax for low UHImax
values, and underestimates UHImax for high UHImax val-
ues. Note that Oke (1998) formulated their model based on
observations from North American cities, whereas here we
explored European data. Hence, the relation between wind
speed and the UHImax might vary for example between
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regions, climate zones, land use and roughness. In addi-
tion, their model also requires information on the observed
cloud types, a parameter that is not routinely observed
(nowadays).

In this study, we have utilized weather stations set-up
by hobby meteorologists that are located in gardens,
and rooftop stations have been eliminated. Unfortunately,
this gives a limited variability in urban climate zones
where measurements are taken (Table 1). The urban sta-
tions in Paris, Amsterdam and Köln gave much more
information about including surface morphological prop-
erties into Equation (13). It is also important to note
that the sky-view factor not only indicates the street
geometry but also the building density and the location
within the city, on the edge or in the centre, because the
building density is generally higher in the centre of a
large city.

In this study, our diagnostic equation has solely been
derived from observations originating from northwestern
Europe. This region of the world does not have many
high-rise buildings (as in North-America or Asia) and
has buildings with similar thermal properties. In addi-
tion, the variety in the climate within the utilized data
sets is rather limited. All stations are located in a mild
maritime climate (Cfb), with relatively cool summers and
mild winters, where evaporation is usually not limited
by soil moisture availability. Hence, we observe a large
range of weather types and therefore a broad range in
UHImax magnitudes.

Note that this diagnostic equation does not account for
several other urban properties such as building materials,
anthropogenic heat and water fraction. This research
assumed that building properties are generally similar,
which is not unreasonable to assume in Western Europe.
Applying the equation to areas with different ways
of building houses and offices in for example Asia or
North-America, other urban properties may need to be
included in a1 (Equation (12)). Here, we could think of
variables such as thermal admittance, soil moisture and
albedo. For example, it may be more accurate to use the
impervious surface fraction because bare soil also evap-
orates. This would make the equation more applicable in
other climates where bare soil is more common. However,
in this case, we choose the vegetation fraction because it
is more easily derivable using satellite images (e.g. green
fraction, normalized difference vegetation index (NDVI))
available to the public. Defining the impervious surface
fraction requires a more complex approach (e.g. Wu,
2004). In addition, Figure (5) shows that the vegetation
fraction is sufficiently correlated to the UHImax. Similarly,
anthropogenic heat is not included in Equation (13).
Therefore, the equation should not be applied in places
with heavy industry, and in the mid- or high-latitude win-
ter season when anthropogenic heating is large. However,
if the amount of anthropogenic heat release is known,
it could be added to S↓ or added as a new variable in
the dimensional analysis. This was not attempted in this
research due to the uncertainty in the available methods
of estimating anthropogenic heat. Concerning the water

fraction, water dampens the diurnal temperature range
inside and outside the city. The DTR of the rural area will
be influenced by the proximity to the sea or other large
water body. Therefore, the diagnostic equation performs
best when the city and the rural station are of approxi-
mately similar distance to a water body. Equation (13) is
not influenced by small channels, lakes or ponds within
the city.

Above we mainly discussed the urban surface proper-
ties that can influence the UHImax. In addition, we only
examined measurements above grass and cropland as rural
reference sites and did not test the performance above con-
trasting rural land surface types. However, a rural location
with a bare soil, a forest or an extreme amount of soil mois-
ture availability will influence the cooling ability of the
rural environment. The rural cooling effect is implicitly
included in the DTR (Dai et al., 1999; Bonan, 2001; De
Wekker and Whiteman, 2006). For example, the cooling
ability of a forest is generally less than dry, bare soil and
the DTR will be smaller. Consequently, the UHImax of a
city with a forest surrounding it will have a smaller UHImax
compared to a city surrounded by dry, bare soil. However, a
situation when the DTR will not sufficiently represents the
urban versus rural cooling in the equation is snow cover,
that is or is partially removed in the city. This can cause
very large differences in urban temperatures (e.g. Klysik
and Fortuniak, 1999)

Concerning the measured wind speed above the rural
surface, the surface roughness and the measurement height
influence the magnitude of the wind speed. In order to
correct for the roughness of the rural terrain and the
measurement height, the potential wind speed (Up) can
be used (Wieringa, 1986). For a measurement height of
10 m with low vegetation (a roughness length of about
0.03 m), the correction factor is 1, therefore the mea-
sured wind speed is the same as the potential wind speed.
However, if the wind speed is measured at a location
with a higher roughness length, the potential wind speed
increases.

While using the dimensional analysis method to derive
an equation for UHImax, there was not a sufficient num-
ber of variables to create completely independent groups.
While deriving Equation (13), both dimensionless groups
included DTR. This means that there may be some degree
of self-correlation between 𝛱1 and 𝛱2 in Figure (3). In
order to determine the amount of self-correlation, Baas
et al. (2006) proposed randomizing all of the individual
variables of the observational data set. Randomizing the
data set used in this research and redrawing Figure (3)
showed very scattered results without any obvious rela-
tion. This gives us confidence that self-correlation does not
characterize the relation between the two dimensionless
groups.

8. Conclusions

In this study, a diagnostic equation was derived to esti-
mate the daily maximum UHI within the urban canyon.
Key meteorological variables obtained from routine rural
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weather station data, solar radiation, diurnal temperature
range, wind speed and the vertical temperature gradi-
ent, and their relation to the UHI were analysed. Using
these variables, multiple equations for the UHI could
be composed and evaluated. Equation (13) performed
best after including the most relevant urban morphology
parameters (in this case, sky-view factor and vegetation
fraction) for several cities in northwestern Europe.

The diagnostic Equation (13) is relatively simple, phys-
ically based and is in good agreement with field observa-
tions. It only requires routine observations or forecasts of
screen-level temperature, solar radiation and 10-m wind
speed in the rural area. However, the variety of cities tested
is limited and further evaluation of cities outside north-
western Europe is needed.

The analytical equation is straightforward to apply
in practice and gives a surprisingly satisfactory esti-
mation of the daily maximum UHI under different
weather conditions, without running a complicated and
time-consuming urban canopy or atmospheric numeri-
cal model. This equation for the nocturnal canopy UHI
allows for applications far beyond urban meteorolog-
ical or climate studies. Amongst others, applications
might include energy demand and health studies,
requiring a representation of the night-time thermal
environment of cities.
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Appendix:

Here, the derivation for the dimensionless groups 𝛱1 and
𝛱2 is shown. We start with the following equation:

𝛱 = UHI𝛼maxS↓𝛽DTR𝛾U𝛿 (A1)

Here, 𝛼, 𝛽, 𝛾 and 𝛿 are the exponents for each variable.
Based on the number of dimensions, i.e. three in this case,
we obtain the following system of equations:⎛⎜⎜⎜⎝

𝛼 + 𝛽 + 𝛾 = 0

𝛽 + 𝛿 = 0

−𝛽 − 𝛿 = 0

where we see that the last two equations are equal and
including both equations does not provide any additional
information. Therefore, we can create two dimensionless
groups. In order to create these dimensionless groups, we
chose two parameters. For the first group, we choose 𝛽 = 0
and 𝛿 = 0: ⎛⎜⎜⎜⎝

𝛼 + 0 + 𝛾 = 0

0 + 0 = 0

−0 − 0 = 0

Consequently, 𝛼 = 1 and 𝛾 =− 1 resulting in
𝛱1 = UHI1

maxS↓0DTR−1U0 giving:

𝛱1 =
UHImax

DTR
(A2)

For the second group, we choose 𝛼 = 0 and 𝛿 =− 1:⎛⎜⎜⎜⎝
0 + 𝛽 + 𝛾 = 0

𝛽 − 1 = 0

−𝛽 + 1 = 0

Consequently, 𝛽 = 1 and 𝛾 =− 1 resulting in
𝛱2 = UHI0

maxS↓1DTR−1U−1 giving:

𝛱2 = S↓

U · DTR
(A3)
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