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Abstract Urban canopy models (UCMs) are parametrization schemes that are used to improve weather
forecasts in urban areas. The performance of UCMs depends on understanding potential uncertainty
sources that can generally originate from the (a) urban surface parameters, (b) atmospheric forcing, and
(c) physical description. Here, we investigate the relative importance of surface and atmospheric driven
model sensitivities of the single‐layer urban canopy model when fully interactive with a 1‐D configuration
of the Weather Research and Forecasting model (WRF). The impact of different physical descriptions in
UCMs and other key parameterization schemes of WRF is considered. As a case study, we use a 54‐hr period
with clear‐sky conditions over London. Our analysis is focused on the surface radiation and energy flux
partitioning and the intensity of turbulent mixing. The impact of changes in atmospheric forcing and
surface parameter values on model performance appears to be comparable in magnitude. The advection of
potential temperature, aerosol optical depth, exchange coefficient and roughness length for heat, surface
albedo, and the anthropogenic heat flux are the most influential. Some atmospheric forcing variations
have similar impact on the key physical processes as changes in surface parameters. Hence, error
compensation may occur if one optimizes model performance using a single variable or combinations
that have potential for carryover effects (e.g., temperature). Process diagrams help differences to be
understood in the physical description of different UCMs, boundary layer, and radiation schemes and
between the model and the observations.

1. Introduction

Urban canopy models (UCM) are essential components of many numerical weather prediction (NWP) mod-
els as they represent subgrid scale physical process of the urban fabric. However, given their complexity,
UCMs' performance is not always well understood. Large variations in model performance have been
reported between different UCMs (Grimmond et al., 2010) with similar configurations for the urban surface
parameters (Best & Grimmond, 2015; Grimmond et al., 2010) and between the same UCM with different
configurations (Grimmond et al., 2010; Loridan et al., 2010).

One source of uncertainty in the performance of a UCM originates from the complexity of the representation
of the urban surface in the UCM (Best & Grimmond, 2015). The complexity ranges from bulk schemes that
only account for basic surface parameters to multilayer schemes accounting for building drag effects and
street‐canyon orientation (Jarvi et al., 2011; Kusaka et al., 2001; Martilli et al., 2002; Masson, 2000;
Salamanca & Martilli, 2009). The simpler physical description in less complex UCMs could potentially lead
to worse performance from incomplete representation of physical mechanisms in the urban environment.

Best and Grimmond (2015) showed that differences in complexity between UCM might not be the primary
source of model bias. Their findings, supported also by those of Loridan et al. (2010), Demuzere et al. (2017),
and Ronda et al. (2017), suggest that adequate prescription of urban surface parameters is equally essential
(if not more) for reducingmodel biases. The surface parameters are also linked to key physical processes, like
radiation absorption (e.g., surface albedo and emissivity) and surface energy partitioning. Given the plethora
of parameters that are needed to be known, disentangling the contribution of each parameter on model per-
formance can be time consuming (Loridan et al., 2010; Loridan & Grimmond, 2012; Zhao et al., 2014). An
offline multioptimization that minimizes errors due to uncertainties in surface parameters in a UCM is pos-
sible (Loridan et al., 2010). However, understanding the contribution of all surface parameter changes to key

©2020. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RESEARCH ARTICLE
10.1029/2019JD032167

Key Points:
• High daytime temperatures lead to

increased nocturnal atmospheric
stability and radiative cooling

• Nonlinear model response
highlights the need to use coupled
land‐surface atmosphere models
during sensitivity tests

• Differences in physical description
can be explained via changes in
atmospheric forcing or surface
parameters

Supporting Information:
• Supporting Information S1

Correspondence to:
A. Tsiringakis,
aristofanis.tsiringakis@wur.nl

Citation:
Tsiringakis, A., Holtslag, A. A. M.,
Grimmond, S., & Steeneveld, G. J.
(2020). Surface and atmospheric driven
variability of the single‐layer urban
canopy model under clear‐sky
conditions over London. Journal of
Geophysical Research: Atmospheres,
125, e2019JD032167. https://doi.org/
10.1029/2019JD032167

Received 2 DEC 2019
Accepted 7 JUN 2020
Accepted article online 19 JUN 2020

TSIRINGAKIS ET AL. 1 of 18

https://orcid.org/0000-0002-6922-5086
https://orcid.org/0000-0002-3166-9415
https://orcid.org/0000-0002-5922-8179
https://doi.org/10.1029/2019JD032167
https://doi.org/10.1029/2019JD032167
http://dx.doi.org/10.1029/2019JD032167
http://dx.doi.org/10.1029/2019JD032167
http://dx.doi.org/10.1029/2019JD032167
mailto:aristofanis.tsiringakis@wur.nl
https://doi.org/10.1029/2019JD032167
https://doi.org/10.1029/2019JD032167
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019JD032167&domain=pdf&date_stamp=2020-07-17


physical process in the urban fabric, and the coupling with the overlying atmosphere is virtually an
impossible task.

Complexity increases further when UCMs are coupled to the atmosphere. In such cases an offline multiop-
timization approach might not have the expected improvement in model performance, as model response to
changes in parameters setting varies substantially depending on whether a UCM is coupled to the atmo-
sphere or not (Tsiringakis et al., 2019). However, when coupled to a NWPmodel, UCMuncertainty increases
also from variations in atmospheric forcing provided by the different parameterization schemes coupled
with the UCM. Ferrero et al. (2018) found that BEP and BEP + BEM models perform better when coupled
to TKE‐based boundary layer schemes. This highlights that the turbulent mixing intensity strongly affects
model performance, through modification of near‐surface atmospheric forcing. Such findings are also sup-
ported by Sterk et al. (2013) and Bosveld et al. (2014).

Therefore, it is not surprising that in‐depth knowledge on UCM performance when coupled to NWPs is still
limited. It is essential to know which uncertainty sources could have the largest impact on the key radiative,
surface energy, and turbulent mixing processes. We investigate if different uncertainty sources have similar
impacts on model variability to identify compensating effects on model bias. Changes in surface parameters
and atmospheric forcing on three key physical process are tested. The results are utilized to identify why
model performance varies between different UCMs coupled to the same NWP and between the same
UCM coupled to different boundary layer and radiation schemes existing in the NWP model.

The impact of changes in surface parameters and atmospheric forcing on the surface radiation balance, sur-
face flux partitioning, and turbulent mixing in the single‐layer urban canopy model (SLUCM, Kusaka et al.,
2001) coupled to the Weather Research and Forecasting (WRF) model (Powers et al., 2017; Skamarock et al.,
2008) is studied using a case study (section 2). A brief evaluation with observations is conducted prior to an
in‐depth analysis of the model variability caused by changes in surface parameters and atmospheric forcing
(section 3). We explore how physical processes modified by changes in the atmospheric forcing and surface
parameters can explain variations between different parameterization schemes (section 4). Finally discussion
and conclusions are drawn (sections 5and 6).

2. Methodology
2.1. Case Study Description

A clear‐sky 54‐hr period (00:00 UTC 23 July 2012 to 06:00 UTC 25 July 2012) from the SUBLIME study
(Steeneveld et al., 2017; Tsiringakis et al., 2019) is used. A spin‐up time of 6 hr is used to allow building tem-
peratures adjust to the changes in atmospheric forcing components and surface parameters. The first 24‐hr
(06:00 UTC 23 July 2012 to 05:00 UTC 24 July 2012) are used for the primary focus of this paper (sections 3.2,
3.3, 3.4, and 4). For the following 24‐hr (06:00 UTC 24 July 2012 to 05:00 UTC 25 July 2012) the sensitivity
analyses are repeated. This latter material and comparison to the prior day is presented in the supporting
information.

Observations taken at the King's College London measurement site (KSSW) (Kotthaus & Grimmond, 2014a,
2014b) include temperature, wind, radiation, and surface fluxes at 50 m above ground level (a.g.l.). The local
urban surface properties used for the reference experiment (Table 1) are based on existing literature for the
KSSW site (Kotthaus & Grimmond, 2014a, 2014b) and central London (Bohnenstengel et al., 2014b;
Oikonomou et al., 2012). Other surface parameters used (not in Table 1) are (a) average building height,
(b) aspect ratio, (c) roof width, (d) albedo, (e) heat capacity, (f) thermal conductivity, and (g) emissivity
values for all facets. These are from SUBLIME (Steeneveld et al., 2017; Tsiringakis et al., 2019) and are
available on the SUBLIME website (www.met.wur.nl/sublime).

The atmospheric forcing (Steeneveld et al., 2017; Tsiringakis et al., 2019) includes initial profiles for potential
temperature, wind, mixing ratio (up to 17 km) and surface pressure. The 1‐DWRF model initialization pro-
files are based on a radio‐sounding (UWYO, 2012) at Herstmonceux, Hailsham, UK, at 00 UTC 23 July 2012
and are adjusted using the KSSW measurements and 3‐D WRF model derived profiles over London. The
adjustment with KSSW and 3‐D WRF is done to ensure an accurate estimate of boundary temperature,
moisture, and wind given the 70 km separation between KSSW and Herstmonceux.
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Boundary conditions for the 1‐D WRF model are applied in the form of subsidence, geostrophic wind, and
advection tendency terms for potential temperature, moisture, and u and v wind components. Geostrophic
wind is derived from 6‐hourly ECMWF operational reanalysis data (ECMWF, 2012) in combination with a
3‐DWRF simulations (hourly data) (Steeneveld et al., 2017; Tsiringakis et al., 2019). Geostrophic wind values
are given as 6‐hourly means, with a tendency term applied to the u and v geostrophic wind components at
each time step (of 1‐D WRF) to ensure a smooth change in geostrophic wind through the 6‐hourly blocks
and avoid oscillations from imbalance between actual and geostrophic wind speeds.

Advection for potential temperature, mixing ratio and momentum (u and v wind) are imposed throughout
the 54‐hr period as additional tendency terms in the prognostic equations for the specified variables.
These tendency terms are derived from 3‐D WRF model simulations for London (Tsiringakis et al., 2019).
The hourly advection terms from 3‐D WRF are averaged with advection estimates from WMO stations
(NOAA/NCDC, 2012) within and around London. Six‐hourly means are obtained from the hourly values.
Thus a static advection is prescribed (i.e., independent of the 1‐D WRF temperatures) that changes every
6 hr in the 1‐D WRF simulation. Advection is treated as uniform throughout the observed height of the
boundary layer, with a sharp linear decrease above. This new approach is preferred to avoid daytime stable
stratification from a sharp decrease of negative temperature advection between 500 and 1,500 m, as in the
original SUBLIME forcing (Steeneveld et al., 2017; Tsiringakis et al., 2019). The latter affects the distribution
of TKE in the upper part of the boundary layer, thus impacting the boundary layer height and the tempera-
ture and moisture profiles.

Initial soil temperature and moisture content profiles (to 1.5 m depth), surface temperature for vegetation
and urban surfaces are provided. They are derived from a 3‐D WRF simulation and then cycled 3×2 days
in an offline setup, until the deepest soil temperature became constant and storage heat flux shows a similar
diurnal range for both days of the case study (Tsiringakis et al., 2019).

2.2. Model Description and Setup

Here we use the single‐column version of WRF v3.8.1 (Skamarock et al., 2008). The urban surface is parame-
terized based on the SLUCM scheme (Chen et al., 2011; Kusaka et al., 2001) with the Noah‐LSM scheme
(Chen & Dudhia, 2001) representing the vegetated land‐surface processes. SLUCM separates the urban sur-
face into three facets (roof, road, and wall), each with their distinct sky‐view factor based on urban morpho-
logical parameters. The turbulent sensible heat (QH) flux from each facet is calculated:

QH ¼ ρ cP CH Ua ðΔθÞ; (1)

where ρ is the air density (kg m−3), cp is the specific heat capacity of dry air (J kg−1 K−1), and CH is the
exchange coefficients for heat. Δθ (K) is the potential temperature difference between the surface and
the air. Ua is the wind speed (m s−1) at the first model level. The urban and vegetation fluxes are combined
using a tiling approach based on their plan area fraction. The anthropogenic heat flux (Qf) (added to the
first model level) is prescribed with a diurnal cycle. For more details about SLUCM physical description
and parameters see Loridan et al. (2010).

The surface layer and boundary layer are parameterized usingMellor‐Yamada‐Janjic (MYJ) schemes (Janjic,
1994). Radiative processes for long‐wave and short‐wave radiation are obtained from the RRTMG radiation

Table 1
Experiment With Reference Values Held Constant When Another Parameter Is Varied Across the Uncertainty Range

Experiment name Parameter Reference Values used

furb_value furban (0–1) 0.85 0.75, 0.80, 0.85, 0.90, 0.95
αroof_value αroof (0–1) 0.18 0.10, 0.15, 0.18, 0.25, 0.30
λwall_value λwall (J s

−1 K−1) 0.60 0.15, 0.45, 0.60, 0.75, 1.05
Cwall_value Cwall (J m

−3 K−1 ∗106) 1.50 0.60, 1.20, 1.50, 1.80, 2.40
akanda_value akanda (−) 1.00 0.50, 0.80,1.00, 1.10, 1.40
Qf_value Qf (W m−2) 38.0 10.0, 30.0, 38.0, 50.0, 70.0

Note. Experiment naming uses the surface parameters tested and their value. See Table A1 for notation definitions.
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schemes (Iacono et al., 2008), while for microphysics the WSM 3‐class order scheme (Hong et al., 2004) is
used. The model uses 70 vertical levels that extent to 17 km, with 25 levels within the lowest 1.5 km.

2.3. Strategy for the Sensitivity Tests

Sensitivity tests are conducted to address the three sources of uncertainty influencing model performance:
(a) surface parameters, (b) atmospheric forcing, and (c) the differences in physical description in other essen-
tial parameterization schemes. The aim is to identify the effects these have on the surface radiation, energy
fluxes, and turbulent intensity.
2.3.1. Surface Parameters
Based on Loridan et al. (2010) and Zhao et al. (2014), we identify urban fraction (furban), albedo (a), thermal
conductivity (λ), heat capacity (C), the akanda parameter, and the anthropogenic heat flux (Qf) as the most
influential surface parameters. Note that as Qf is prescribed in SLUCM it is treated as a parameter rather
than a variable. For simplicity we investigate only the impact of roof albedo (aroof), wall thermal conductivity
(λwall), and heat capacity (Cwall) rather than all facets. Tsiringakis et al. (2019) found these to have the domi-
nant impact on model performance in the current model configuration.

The akanda parameter modifies the roughness length of heat (Zohc) from the one of momentum (Zomc) above
the urban canyon and the overlying atmosphere (Kanda et al., 2007; Loridan et al., 2010) via,

Zohc ¼ Zomce
ð2−akandaðRe∗c Þ0:25Þ; (2)

where Re∗c is the Reynolds roughness number. Hence the akanda primarily influences the ratio between
sensible (QH) and storage (ΔQs) heat fluxes, with larger values decreasing QH (and vice versa). It thus
impacts the skin temperatures, surface flux partitioning, turbulent mixing in the surface layer, and the
outgoing long‐wave radiation (LWU) due to lower ΔQs.

Qf is a very uncertain parameter as in reality it is highly variable with strong dependence on anthropogenic
activities (Bohnenstengel et al., 2014; Dong et al., 2017; Iamarino et al., 2012). For London values can vary
between 10 and 140 W m−2, depending on the location and area extent, with estimates reaching 200 W
m−2 in central London (Iamarino et al., 2012) but small when averaged over larger areas (Dong et al.,
2017; Lindberg et al., 2013). Ward et al. (2016) estimate Qf for this study area to vary temporally between
20 and 80Wm−2. Considering how important the anthropogenic heat flux can be for the surface energy bal-
ance (Best & Grimmond, 2016) it is essential to include it in our analysis. Reference values, incremental
change, and minimum/maximum variation limits for the surface parameters (Table 1) are based on Dong
et al. (2017), Iamarino et al. (2012), Loridan et al. (2010), Ward et al. (2016), Zhao et al. (2014), and
Tsiringakis et al. (2019).
2.3.2. Atmospheric Forcing
The atmospheric effects investigated are the impact of radiation, advection of heat and moisture, and turbu-
lent mixing intensity. Short‐wave radiation biases in cities are common even in clear‐sky conditions
(Tsiringakis et al., 2019) by WRF, especially due to aerosol loading effects on direct short‐wave radiation
(Gomes et al., 2008; Kokkonen et al., 2019). Hence we modulate the aerosol optical depth (AOD) to simulate
effects on radiation between clearer and more polluted atmospheric conditions. Terra/MODIS satellite
derived AOD (Levy et al., 2013) range between 0.1 and 0.4 (0.18 in the reference run) depending on the dis-
tance from central London and the timing of the measurement (NASA/EOSDIS, 2019). Long‐wave radiation
biases in models participated in GABLS (including WRF) (Bosveld et al., 2014; Kleczek et al., 2014) suggest
that long‐wave downward radiation (LWD) biases are caused by bias in boundary layer temperature and
humidity and different physical complexity of the radiation models. Using an extreme CO2 uncertainty
range (38–3,800 ppm) we increase and decrease the long‐wave downward (LWD) radiation without changing
directly air temperature or humidity. This allows us to further disentangle the atmospheric driven
uncertainty in LWD from the physical driven one.

Heat (ADVθ) and moisture (ADVq) advection are inherently difficult to estimate correctly especially in
heterogeneous environments. Yet they strongly impact the near‐surface temperature and the surface energy
balance (Heaviside et al., 2015). ADVθ and ADVq forcing are both positive and negative in the study period.
Multiplication factors (Table 2) are applied to the negative advection values. Positive advection
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values receive the inverse multiplication factor for these tests (e.g., when
ADVθ< 0 values are multiplied by 1.25, positive values are multiplied
by 0.8 and vice versa).

To investigate the impact of turbulent mixing intensity we modify the
exchange coefficients for heat (CHheat) and momentum (CHmom) for the
urban, surface layer, and boundary layer schemes. These coefficients are
linearly (Table 2) enhanced or decreased to modify the coupling between
the surface and overlying atmosphere. The turbulent mixing impacts the
performance of the surface layer scheme (Bosveld et al., 2014; Sterk et al.,
2013) and can explain much of the biases (i.e., long‐wave radiation,
near‐surface temperature, and surface energy fluxes) between model
results and observations. Here we investigate fully convective boundary
layers, whereas previously neutral and stable boundary layers have been
studied. Hence our range of the multiplication factors for the exchange
coefficients (0.67–1.50) is smaller than that used by Sterk et al. (2013)
and Bosveld et al. (2014) (0.25–4).

2.3.3. Physical Ensemble Tests
Variability inmodel performance is also caused by themodel physics used to parameterize subgrid scale pro-
cesses. The PILPS urban (Grimmond et al., 2010, 2011) and the GABLS (Bosveld et al., 2014; Kleczek et al.,
2014) studies have investigated this variability in model performance for different UCMs, boundary layer,
and surface layer schemes. Using different NWP models (as seen in GABLS) complicates the analysis of
model differences, as physics schemes also vary, thus adding uncertainty.

Using WRF, we can vary the individual physics schemes, while keeping others unchanged giving us a “phy-
sical ensemble” that enables us to test the third source of uncertainty (physics description). Here we consider
the radiative transfer, boundary layer, and UCM schemes available in WRF (Table 3).

For the urban surface, BEP and BEP + BEMmultilayer urban canopy models are tested (Martilli et al., 2002;
Salamanca &Martilli, 2009) with SLUCM (Kusaka et al., 2001) being the reference choice. For the boundary
layer we test the Yonsei University scheme (YSU) Hong et al. (2006) and Quasinormal Scale Elimination
(QNSE) Scheme (Sukoriansky et al., 2005) both coupled to WRF‐SLUCM‐Noah setup. The radiation scheme
is changed to the CAM short‐wave and long‐wave radiation schemes (Collins et al., 2004).

2.4. Analysis of Process Diagrams

Process diagrams (Bosveld et al., 2014; Sterk et al., 2013) allow the impact of atmospheric forcing, surface
parameters, or parameterization schemes changes to be explored relative to a control run for a pair of vari-
ables. Eachmodel run is represented by themean of the two variables under investigation for a specified per-
iod (e.g., daytime or nighttime). We link these points to identify if the response is linear or nonlinear. Model
sensitivity tests allow identification of the dominant influences on the pair of variables under investigation,
within the ranges of the perturbed parameters and atmospheric forcing components (Tables 1, 2, and 3). The
mean observations are shown to help explain differences between model and observations. Following

Bosveld et al. (2014) we use four perturbations and the reference model
run to capture changes in parameters and atmospheric forcing compo-
nents (including drawing the sensitivity lines), but we only show the
maximum and minimum limits as points in the figures.

Sterk et al. (2013) and Bosveld et al. (2014) suggest that it is essential to
identify variables combinations that are coupled/interdependent and are
linked to the physical processes under investigation. Given the observa-
tions available we focus on (a) surface radiation balance, (b) surface
energy flux partitioning, and (c) turbulent mixing separated by the time
of day (based on surface net radiation Q∗) into day (Q∗>0Wm−2) and
night (Q∗<0Wm−2) (Best & Grimmond, 2015), allowing the analysis of
results under strong and weaker turbulent mixing regimes, when different
physical processes dominate.

Table 3
Parameterization Schemes Varied From the Reference Setup in Seven Runs

Run
SW

radiation
LW

radiation
Boundary

layer UCM

R1(reference) RRTMG RRTMG MYJ SLUCM
R2 CAM — — —

R3 — CAM — —

R4 — — YSU —

R5 — — QNSE —

R6 — — — BEP
R7 — — — BEP + BEM

Note. Acronyms are explained in Appendix A1.

Table 2
As Table 1 but for Atmospheric Forcing

Experiment Atmospheric forcing Reference Values used

AOD_value AOD (0–1) 0.18 0.00, 0.09, 0.18,
0.27, 0.36

CO2_value CO2 (ppm) 380 38, 76, 380, 1900,
3800

CHheat_value CHheat
(mult. factor)

1.00 0.67, 0.80, 1.00,
1.25, 1.50

CHmom_value CHmom
(mult. factor)

1.00 0.67, 0.80, 1.00,
1.25, 1.50

ADVθ_value ADVθ (mult. factor) 1.00 0.67, 0.80, 1.00,
1.25, 1.50

ADVq_value ADVq (mult. factor) 1.00 0.67, 0.80, 1.00,
1.25, 1.50

Note. Aerosol optical depth (AOD) and CO2 concentration values change,
whereas the remainder use a multiplication factor.
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3. Results
3.1. Model Evaluation for the Reference Model Setup

Here we briefly evaluate the 50m air temperature and net all‐wave radiation (Q∗). For a more extensive eva-
luation see Tsiringakis et al. (2019).

For the entire evaluation period (06:00 UTC 23 to 06:00 UTC 24 July) the reference run (R1) has a mean
bias error (MBE) of 0.11°C (Figure 1). Themodeled T50m is cooler during daytime (MBE = −0.55°C) and war-
mer at night (MBE = 0.90°C) compared to the observations, suggesting the simulated temperature range is
important. Therefore, the changes in temperature (ΔT50m = T50m,max−T50m,min) during daytime and night-
time is also considered. The observed daytime ΔT50m is 9.85°C and 9.52°C when modeled (Figures 1 and 3).
A nighttime MBE of 0.75°C exists between the modeled ΔT50m (6.26°C) and observed (7.01°C).

For Q∗ the reference run model has anMBE of −23.3 W m−2 originating from −43.6 W m−2 dayMBE and a
0.7 W m−2 night. The daytime bias originates from short‐wave downward radiation SWD (MBE = 14.3 W
m−2), short‐wave upward radiation SWU ( MBE = 24.8 W m−2), long‐wave downward radiation LWD

(MBE = −16.1 W m−2) and long‐wave upward radiation LWU (MBE = 20.9 W m−2) (Figure S1) biases.
The nocturnal bias in Q∗ originates from LWD and LWU biases of −8.1 and −8.8 W m−2, respectively.

3.2. Surface Radiation Balance

From the sensitivity analyses the bias in SWD is caused by aerosol optical depth (AOD), as all other para-
meter changes do not decrease SWD. An AOD of 0.27 reduces the bias in SWD. Terra/MODIS AOD data
(Levy et al., 2013) for the study period (not shown) indicate a sharp increase of AOD from 0.15 (outskirts
of London) to 0.25 (central business district, CBD). However, improving the SWD estimate increases Q∗

MBE (to −52 W m−2) and net short‐wave (S∗) at the surface. As the bias originates primarily from SWU,
we can attribute this to the bulk albedo of the urban surface. By decreasing aroof to 0.12 we decrease the sur-
face albedo (Figure 2b) and reduce the Q∗ MBE (to −40 Wm−2). The bias in bulk albedo originates from the
2‐D canyon physical description in SLUCM (Tsiringakis et al., 2019).

The remaining bias in Q∗ is from the net long‐wave radiation (L∗). The daytime bias in the LWD is only par-
tially explained by uncertainty in ADVθ and ADVq (∼4–5 W m−2, Table 4a). Large changes in CO2, not sup-
ported by observational data, would be sufficient to account for this bias. However, it is more likely that the
bias originates from a negative bias in mid‐to‐upper boundary layer temperature and moisture, but this can-
not be verified with the existing observations. The LWU biases are attributed to four different sources
(CHheat, akanda, cwall, and λwall), with the first two being the stronger contributors. CHheat and akanda alter

Figure 1. Modeled (reference setup) and observed hourly (a) air temperature (°C) and (b) net all‐wave radiation (Q∗)
(W m−2) at 50m above ground level at the KSSW site for the period 01:00 UTC 23 July 2012 to 06:00 UTC 24 July 2012.
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Q∗ by modulating the LWU radiation via changes in skin temperature, with larger values for CHheat (and
lower for akanda) removing heat faster from the surface and thus reducing skin temperatures and LWU.

While correcting the bias in Q∗ is arbitrary, it does not lead to better model performance in general. The
response of ΔT50m for a given change in Q∗ strongly depends on which atmospheric forcing or surface para-
meter is modified (Figure 3).

During the day, changes in ADVθ have small effect in Q∗, but strongly impact ΔT50m (1.8 K difference). The
lack of variability in Q∗ is from compensating changes in LWD and LWU (Table 4a) indicating that the
boundary layer is in radiative balance with the surface, despite the drastic temperature change. An opposite
effect is observed for changes in AOD, where the large decrease inQ∗ (up to−37Wm−2 from 0 to 0.36 AOD)
are not followed by a change inΔT50m. This is caused by the increase in radiative heating due to SWD absorp-
tion at higher aerosol concentrations, which compensates for the decrease of air temperature by decreasing
QH. Changes in CHheat and CHmom have positiveQ∗−ΔT50m relations with strong radiative heating at higher
Q∗ and vice versa (Figures 3a, 3b, S7a, and S8a). The change in ΔT50m can be attributed to the changes inQH,
which are caused by the changes in CHheat (Equation 2).

Variations in SLUCM surface parameters have different impacts. Changes in aroof and akanda, like CHheat

and CHmom, have a positive trend (Figures 3b, S3a, S7a, and S8a), with aroof having larger impact on Q∗

(up to 40.4Wm−2), whereas akanda has more impact on ΔT50m. The aroof and akanda increase Q
∗ (and conse-

quently QH), thus increasing ΔT50m as well. However the effect of akanda on QH is also from changes in the
roughness length of heat (Equation 1), which also impact the exchange coefficient of heat (Equation 2).

The effects of changing furban,Cwall, and λwall cause an increase in ΔT50m with a decrease in Q∗ (Figure 3b).
LWu increases with smaller Cwall, λwall, and larger furban values (Table 4a). ΔT50m increases with decreasing
Cwall and λwall as ΔQs is decreased, hence increasing QH, while increasing furban changes the vegetation frac-
tion, thus decreasing the QE and consequently increasing QH. Changes in Qf and ADVθ both have the same
orientation (Figures 3a and 3b) but different magnitude, with Qf not really affecting ΔT50m during the
daytime.

Figure 2. Sensitivity analysis across modeled uncertainty ranges (Tables 1, 2, and 3). Impact on the average SWD and Q∗

with changes in (a) atmospheric forcing, boundary layer, and radiation schemes and (b) changes in surface parameters
and UCMs for daytime (06:00 UTC 23 July 2012 to 18:00 UTC 23 July 2012). For surface parameter (Table 1) and
atmospheric forcing components (Table 2) only model runs using minimum (open symbol) and maximum (filled symbol)
limit of the uncertainty range are shown, with lines between through all five runs.

10.1029/2019JD032167Journal of Geophysical Research: Atmospheres

TSIRINGAKIS ET AL. 7 of 18



At night changes in ADVθ, ADVq, and CO2 impact both Q∗ and ΔT50m (Figure 3c). However, changes in
ADVθ influence ΔT50m more, while ADVq mostly affects Q∗, by increasing LWD radiation due to more water
vapor in the boundary layer. The prescribed CO2 concentration changes result in substantial changes in noc-
turnal Q∗ (>10 W m−2) and ΔT50m. Increasing CHheat and CHmom result in an increase in ΔT50m at night,
which counteracts the daytime CHheat effects (Tables 4a, 4b, and Figure S8). The increase in nighttime
ΔT50m is due to a decrease in daytimeΔQs (Figure 4a), which leads to smaller release of heat during the night
(Figure 5a) and thus more radiative cooling. Consequently nocturnal air temperatures are lower in experi-
ments with high CHheat (Figure S8).

Changes inQf and akanda strongly influence nocturnalΔT50m (similar toCHheat) but causeminimal variation
inQ∗, given the radiative balance between LWU and LWD (Figure 3c and Table 4b). Increasing akanda leads to
a small decrease in nocturnal Q∗ due to the decrease in LWD, a result of the lower air temperature due to less
QH during the day. Cwall and λwall have a nonlinear behavior at nighttime, because of heat saturation effects
of the urban fabric (Tsiringakis et al., 2019, and section 3.3). Both have a large impact on nocturnal ΔT50m
but also small effect (up to 3 Wm−2) on Q∗. Increasing furban results in the same decrease in Q∗ from higher
LWU but only aminor decrease inΔT50m. This suggests that nighttime cooling rates surprisingly do not show
a strong response to changes in furban. This can be explained by the strength of nocturnal radiative cooling.
As discussed section S2.2, the increase in mean daytime air temperature due to higher furban leads to similar
(or even stronger) cooling during the night (Figures S6d, S8a, and S8b). This nonlinear feedback involves an
increase in daytime T50m followed by an increase in nighttime surface to air temperature gradient, thus lead-
ing to stronger atmospheric stability and more radiative cooling (Figures S7–S10). Changes in furban are not
the only triggering mechanism. It exists for most surface parameters and atmospheric forcing components
that we investigated. Its impact is largest with lower wind speeds during the second day of the case study
(section S2.3).

Table 4
Difference (δ) in Average Q∗, SWD, LWD, SWU, LWU, ΔT50m, ΔTskin, and q50m for a Change Between the Maximum and
Minimum Limits (Tables 1 and 2) for the Atmospheric Forcing and the Urban Surface Parameters for (a) Day (Q∗> 0) and
(b) Night (Q∗< 0)

Parameters δQ∗ δSWD δLWD δSWU δLWU δ(ΔT50m) δ(ΔTskin) δq50m

(a) Day W m−2 K g kg−1

AOD (0–0.36) −37.4 −53.3 −0.7 −8.2 −8.4 0.01 −0.31 0.09
CO2 (38–3,800) 13.1 0.0 19.1 0.0 6.0 −0.11 −0.25 −0.07
CHheat (0.67–1.5) 26.6 0.0 0.9 0.0 −25.8 0.86 −5.77 −0.20
CHmom (0.67–1.5) 9.2 0.0 0.7 0.0 −8.5 0.56 −1.83 −0.03
ADVθ (0.67–1.5) −0.6 0.0 5.0 0.0 5.6 −1.76 −0.50 −0.14
ADVq (0.67–1.5) 1.5 −1.7 3.9 −0.3 0.9 0.06 −0.05 0.94
aroof (0.10–0.30) −40.4 3.2 −2.4 53.2 −12.0 −0.98 −1.79 0.17
cwall (0.60–2.4) 5.7 0.0 −0.5 0.0 −6.3 −0.58 −1.68 0.00
λwall (0.15–1.05) 10.0 0.0 −0.8 0.0 −10.8 −1.39 −3.00 0.01
furban (0.75–0.95) −10.8 0.6 0.0 −0.9 12.3 0.59 2.49 0.51
Qf (10–70) −0.6 0.0 3.4 0.0 4.0 0.19 0.05 −0.21
akanda (0.50–1.40) −26.4 0.0 −3.2 0.0 23.2 −1.83 5.29 0.23
(b) Night
AOD (0–0.36) −0.9 −3.8 −1.1 −0.6 −3.3 0.14 −1.02 0.10
CO2 (38–3,800) 10.4 0.0 20.1 0.0 9.7 −0.65 −0.96 −0.03
CHheat (0.67–1.5) 0.7 0.0 −0.7 0.0 −1.4 1.32 −2.12 −0.16
CHmom (0.67–1.5) 0.2 0.0 −0.11 0.0 −0.3 0.61 −0.57 −0.01
ADVθ (0.67–1.5) 2.3 0.0 −13.3 0.0 −10.9 0.45 0.06 −0.21
ADVq (0.67–1.5) 4.9 −0.11 8.9 0.0 3.9 −0.22 −0.60 1.96
aroof (0.10–0.30) 0.1 0.1 −3.2 1.0 −4.3 −0.25 −0.95 0.24
cwall (0.60–2.4) −2.4 0.0 0.1 0.0 2.5 −0.66 −1.80 0.04
λwall (0.15–1.05) −1.6 0.0 −1.1 0.0 0.5 −0.45 −1.35 0.07
furban (0.75–0.95) −7.5 0.0 0.6 0.0 8.1 −0.14 0.75 −0.87
Qf (10–70) −0.2 0.0 7.9 0.0 8.2 −1.39 −0.73 −0.25
akanda (0. 50–1.40) −2.6 0.0 −2.0 0.0 0.6 −1.46 1.55 0.36
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For the radiative balance and its effects on radiative heating and cooling, we find five sources of uncertainty
in this case study accounting for a large part of the bias between model and observations. As discussed, cor-
recting AOD and aroof can explain the bias net‐short‐wave radiation and some of the bias in daytime ΔT50m.
Decreasing akanda and increasing CHheat effectively removes heat faster from the urban surface, thus
decreasing skin temperature and LWU flux, while increasing ΔT50m in both day and night. Finally a small
increasing in the intensity of ADVθ can compensate the ΔT50m during the day. Some bias still remains in
Q∗ and is primarily associated with the bias in LWD and some remaining bias in LWU.

3.3. Energy Partitioning

Analysis of the surface energy partitioning is essential to understand the overall impact on atmospheric for-
cing and surface parameter changes in ΔT50m. It provides further insight in compensating effects between
day and night.

Regarding changes in atmospheric forcing during the daytime, AOD and CO2 effectively maintain the
same energy partitioning ratio (1.55 to 1.59) for both positive and negative changes in Q∗.

Figure 3. As Figure 2, but for the impact on change in 50m air temperature (ΔT50m = T50m,max−T50m,min) and Q∗

with changes in (a and c) atmospheric forcing, boundary layer, and radiation schemes and (b, d) in surface parameters
and UCMs during (a, b) daytime (06:00 UTC 23 July 2012 to 18:00 UTC 23 July 2012) and (c, d) nighttime (19:00 UTC 23
July 2012 to 05:00 UTC 24 July 2012).
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Consequently any energy gain or loss at the surface is distributed equally between the QH and ΔQs fluxes
(Figure 4a). Changes in CHheat and CHmom impose a variation in energy partitioning, with lower values
leading to faster decrease in QH and increase in ΔQs. The variation here is primarily caused by the
response of QH due to changes in CHheat (Equation 2). QE also decreases, but the flux variation from
changes in CHheat is an order of magnitude smaller than for QH (5 vs. 40 W m−2). The decrease in QH

results in less heat directed toward the atmosphere and more heat stored in the urban fabric, thus
decreasing Q∗ because of lower LWD and larger LWU (Table 4a). Changing advection has similar
effects, but with lower variation in energy partitioning and no effect on Q∗ due to the net long‐wave
radiative compensation.

Surface parameter changes have a wider impact in the parameter space (Figure 4b) compared to the change
in atmospheric forcing, for the current choice of uncertainty range. Decreasing aroof increases the QH/ΔQs

flux ratio, with faster increase in QH compared to ΔQs due to thermal saturation effect on the roof facet.
Thus, for the same change in Q∗ there is a larger variability in ΔT50m compared to changes in AOD
(Figure 3b). Changes in akanda have a nearly identical response as CHheat for the same reasons. The same
occurs for changes in Qf and ADVθ, but despite their similar response in Q∗ and energy partitioning, each
parameter affects the ΔT50m differently during the day and night. Cwall and λwall increase the QH/ΔQs ratio
with decreasing parameter values due to higher skin temperature and higher LWU.

Figure 4. As Figure 3, but for the average surface flux ratio (QH/ΔQs) and net radiation Q∗.
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Although some atmospheric forcing (CHheat and CHmom) and surface parameters (Cwall and λwall) cause a
large variation in flux ratio and ΔT50m, their impact on T50m is small. This can be explained by the opposite
effects on T50m between night and day (Figure S8). For instance an increase in CHheat leads to an increase in
QH during the day but also decreases QH at nighttime (Figures 4a and 4c). Figure 5 shows that heat supply
from the urban fabric at night is lower due to less ΔQs stored during the day as a result of the increase in
CHheat. These compensating effects are what limits the change in T50m. Whereas parameters like Qf and
ADVθ have smaller variations in the QH/ΔQs flux ratio but have strong impact on ΔT50m both during day
(ADVθ) or night (Qf). Hence, both affect the day and nighttime T50m due to strong effects on their tempera-
ture that propagate from day to night and vice versa (Figures S8 and S9).

Following Tsiringakis et al. (2019) we do not derive the storage heat as the residual of surface energy balance,
because of the accumulation of errors (Grimmond & Oke, 1999) and mismatch between the measurement
footprint of the turbulent fluxes and the radiation fluxes (Schmid et al., 1991). Thus, we do not derive
observed flux ratio during the day. However, the nocturnal QH/ΔQs ratio is strongly impacted by the sign
and value of QH, given the difference between modeled (0.15 W m−2) and observed (8.74 W m−2) nocturnal
QH, and the plausible range of nocturnal ΔQs (−50 to −100 W m−2). At nighttime we use the objective hys-
teresis model (Grimmond & Oke, 1991) with the same coefficients as Ward et al. (2016) for this site forced by
the observed Q∗ to derive an “observed” nocturnal ΔQs (−74.3 W m−2), leading to an “observed” QH/ΔQs

estimate of −0.12. Although this is not an observation it allows exploration of how atmospheric forcing or
surface parameters might explain the bias between model and observations.

At night theQ∗ bias betweenmodel and observations is small (3Wm−2), but the flux ratio is much smaller in
the model because QH is nearly zero at night in the reference run. Increasing ADVθ and Qf or decreasing
CHheat and akanda can decrease the nighttime bias in the flux ratio. However, none can consistently correct
biases in QH/ΔQs and ΔT50m at the same time.

3.4. Intensity of Turbulent Mixing

The intensity of turbulent mixing, indicated by the bulk Richardson (Rib) number (between the 1st and 2nd
model levels) aids in understanding the coupling between the urban surface and the overlying boundary

Figure 5. As Figure 2, but for change in (ΔT50m) and the average storage heat flux (ΔQs) during nighttime (19:00 UTC 23
July 2012 to 05:00 UTC 24 July 2012).
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layer. This can help us understand how the changes in the flux partitioning affect this coupling and how is
this translated to the changes we identify in ΔT50m.

Most of the changes in atmospheric forcing (Figure 6a) and surface parameters (Figure 6b) limit the varia-
bility of the Rib between−0.71 to−0.58 during the day, with daytime changes in AOD,CO2 andADVq having
small impact on Rib, and minimal effect in ΔT50m. However, CHheat causes large changes in Rib and ΔT50m.
Smaller increase ΔT50m occurs at lower Rib values and weaker turbulent intensity, while the opposite is true
for higher Rib values. This is somewhat counter‐intuitive, because an increase in QH with larger values
CHheat would have increase the turbulent intensity and ΔT50m. However, the increase in CHheat results in
heat being transported more rapidly from the surface into the boundary layer, warming up the entire bound-
ary layer and reducing the temperature gradient near the surface, driving QH and Rib down during the day
(Figure S10). Changes in ADVθ cause a small decrease in Rib for an increasing in ΔT50m (Figures 6a, S6a, and
S6b). This is primarily caused by the increase in near‐surface temperature gradient as colder air is advected
above the warm surface.

Surface parameter changes show a clear influence on the ΔT50m−Rib variable space, with a 0.2°C to 2.5°C
change in ΔT50m for a 0.1 change in Rib (Figure 6b). The akanda, aroof, and Qf have the largest impact on
Rib during the day. These changes in Rib and ΔT50m primarily originate from a change in QH.

Figure 6. As Figure 3, but for changes in 50m air temperature (ΔT50m) and the average bulk Richardson number Rib.
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At night (Figure 6c) ADVθ, CO2, and CHheat show the largest impact on Rib and ΔT50m. Changes in ADVθ

cause an increased ΔT50m for weaker stability near the surface (smaller Rib). The decrease in atmospheric
stability is caused by the decrease in near‐surface temperature gradient, from the faster decrease in T50m
compared to changes in skin temperature, when strong negative ADVθ is applied (Table 4b). This response
when ADVθ increases is from a stability feedback mechanism. This results in less radiative cooling and
weaker atmospheric stability when daytime ΔT50m decreases. Under low wind conditions, the impact of
the feedback mechanisms intensifies and results in lower nocturnal ΔT50m compared to the reference run
(Figure S6c). The remaining atmospheric forcing modification or surface parameter changes shows an
increase in nocturnal cooling rate, coinciding with also a faster heating rate during the day. Strong radiative
cooling after sunset is the main driver for the stronger atmospheric stability in the experiment runs at night
(Figures 6c and 6d).

Nocturnal surface parameter changes have a large impact on Rib and ΔT50m, with changes in Qf and λwall
showing nonlinear responses during the night. Changes in Cwall,λwall, and akanda have a strong impact in
ΔT50m, which compensates for the larger daytime increase in ΔT50m (Figures 6b and 6d). This compensation
leads to similar nighttime T50m for these surface parameters (Figure S8a). Nocturnal ΔT50m is strongly
dependent on the radiative cooling and the atmospheric stability near the surface; thus surface parameters
which increase daytime ΔT50m result in stronger stability during the night. These findings support our
hypothesis that a negative feedback mechanism exists between daytime ΔT50m and nocturnal ΔT50m.

4. Physical Ensemble Analysis
4.1. Radiation Schemes

Using the CAM short‐wave radiation scheme, instead of the reference RRTMG, increases the SWD bias to
51 Wm−2, while reducing the Q∗ bias to −17 Wm−2 (Figure 2a). The difference between the schemes aligns
with the changes in AOD, which indicates that CAMsw in WRF does not fully account for scattering by aero-
sols. This physical difference will mask the biases in net long‐wave radiation when the CAMsw is used, mak-
ing it more difficult to identify remaining biases, unless each radiation flux component is treated
individually. Comparing CAMlw and RRTMGlw an increase in daytime LWD bias of 8 W m−2 is identified,
causing an increase in Q∗ bias. The CAMlw aligns with the impact of a decrease in CO2 concentration.
That does not indicate an absence of CO2 effects on LWD in CAMlw but is related to a different physical
description of long‐wave radiation between the schemes and it could originate from not accounting fully
for water vapor effects on LWD and from the few spectral bands used compared to the RRTMG scheme.
The exact same biases from CAMsw and CAMlw are seen throughout Figures 3a, 3c, 4a, 4c, 5, and 6 indicating
the importance of the radiation scheme choice.

4.2. Boundary Layer Schemes

Changes in atmospheric forcing do not clearly explain daytime deviations between the different boundary
layer parameterization schemes used (YSU, QNSE, and the referenceMYJ). Although initiallyADVθ appears
to be the primary difference between YSU and the other two schemes, this is misleading as advection is the
same for all. Changes in CHheat and CHmom cannot explain the variations, neither can changes in CO2 or
AOD. Considering that runs with different boundary layer schemes show small variation in Q∗

(Figure 3a), but large variation in ΔT50m, the differences should be primarily driven by the physical descrip-
tion of turbulent processes. Indeed for the daytime the main difference between YSU and MYJ seems to be
the explicit inclusion of entrainment of heat in the YSU scheme and a slightly enhanced surface QH, poten-
tially due to the different surface layer scheme YSU is coupled to. Moreover, decreasing ADVθ does produce
the same effect as the explicit inclusion of entrainment, because both increase mean boundary layer tem-
perature (consistent with the larger ΔT50m for YSU) and boundary layer height in YSU (not shown). Thus,
additional attention should be given not to misinterpret compensating effects from these two physical pro-
cesses. At night the YSU scheme impact is similar to effects of increased CHheat (Figure 3c). This is expected
as increased CHheat indicates stronger nocturnal stability via enhanced radiative cooling due to a stability
related feedback mechanism (sections 3.4 and S2.3).

Differences in MYJ and QNSE are minimal for Q∗ (Figures 3a and 3c) and the QH/ΔQs partitioning
(Figures 4a and 4c) at both time periods. However, substantial differences occur between them in ΔT50m
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and stability (Figure 6a and 6c). Runs with the QNSE schemes have a smaller diurnal cycle of temperature
and instability, reduced buoyancy flux during the day, and weaker stability at night. The nocturnal deviation
from MYJ is caused by stronger wind shear in the QNSE schemes, which appears to be related with lower
CHheat and CHmom at nighttime that reduce the radiative cooling at the surface.

4.3. Urban Canopy Models

The different model results from SLUCM, BEP + BEM, and BEP model can be explained reasonably well
with the surface parameters differences. SLUCM canmatch the daytime BEP + BEM results reasonably well
by decreasing aroof (to 0.12) and akanda (to 0.80) and increasing Cwall (to 1.8*106 J m−3 K−1). Decreasing the
SLUCM aroof is consistent with the lower bulk albedo for the BEP + BEM and BEP models, which have dif-
ferent physical description of the urban morphology and shading. The akanda change increases the modeled
2m exchange coefficient of heat for SLUCM, which is lower than in BEP + BEM. The increase in SLUCM
Cwall increases theΔQs and can compensate the lack of a building energymodel and air‐conditioning cooling
(present in BEP + BEM), which increases the heat capacity of the urban fabric as internal building tempera-
tures remain lower. Exclusion of the BEMmodule in the multilayer scheme leads to substantially larger QH

and lower thermal storage. To match BEP with SLUCM in addition to the changes in akanda and aroof are
needed as well as, a decrease in λwall (to 0.45) and a reduction ofQf to 0Wm−2 (BEP does not account forQf).

These modifications reduce the differences between SLUCM, BEP + BEM, and BEP, causing a daytime
ΔT50m difference reduction to 0.20°C (from 0.75°C) and a 0.06°C reduction at night (from 0.25°C). Q∗

is only improved during the day and becomes identical to BEP + BEM with large reduction in the differ-
ences between the SWU and LWU between the two schemes. The same is true for QH/ΔQs and the Rib,
which indicates more similarity in the surface fluxes and the near‐surface atmospheric stability.
However, at night substantial differences remain in Q∗, due to higher skin temperatures in SLUCM
and also in QH/ΔQs as QH in SLUCM is lower compared to BEP + BEM.

5. Discussion

This analysis identifies the model response to changes in atmospheric forcing and urban surface parameter
for a specific model configuration (section 2.2) and for a specific UCM (SLUCM). The same sensitivity ana-
lysis with different model configurations (e.g., different NWP or reference parameterization schemes) and
UCMs are anticipated to lead to different model responses. This is to be expected due to differences in model
setups and UCMs. Hence, we recommend other UCMs with more complex (i.e., multilayer schemes) and
more simplified (e.g., bulk schemes) physical description of the urban surface to be tested. Similarly different
case studies, urban areas, and predominant meteorological conditions (e.g., cloudy/rain period, different
geostrophic wind speeds) need to be considered.

To ensure our analysis is not day‐specific, we compare the model responses between the first and second
days of the SUBLIME case study. During the second day geostrophic wind speed is substantial lower; thus
sensitivity of the model's response to geostrophic wind is also tested. The model response remains similar
between the 2 days, with the few differences linked to the nonlinear feedback between daytime T50m and
nocturnal atmospheric stability, causing nonlinear behavior for some variables due to the generally larger
Rib during the second day, an effect of the lower wind speeds.

The plausible uncertainty range in atmospheric forcing and surface parameters (as presented in section 2.3)
is based on previous reported sensitivity tests and uncertainty estimates (Loridan et al., 2010; Wang et al.,
2011; Zhao et al., 2014). It could however undersample or oversample the uncertainty range for specific para-
meters leading to skewed model sensitivity. It is expected that such an effect would be more profound on the
actual range of the sensitivity and not so much on the orientation or linearity of the model's response in the
parameter space. However, under lowwind conditions the response for some parameters might be nonlinear
due to stability effects. Therefore, careful selection for the uncertainty range and the frequency of sampling
from the parameter range is essential. For CHheat and CHmom, changes in other atmospheric forcing or sur-
face parameters will affect the calculated values, but their effect is small compared to changes in the multi-
plication factors.
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The 1‐DWRF‐Noah setup and the boundary layer scheme influence the outcome of the sensitivity analysis.
In reality a boundary layer will react differently to changes in physical properties of the underlying surface.
For example, any variation in the urban surface temperature over the urban area will likely result in a
change of temperature advection and also wind speed due to changes in pressure gradient. Such processes
cannot be represented in a 1‐D where advection is prescribed but will require 3‐D simulations. Such limita-
tions in the representation of the overlying atmosphere might exclude feedback mechanisms that could
change the sensitivity reported in this study.

Following Tsiringakis et al. (2019), we used the LWup calculated in the SLUCM rather than the WRF refer-
ence as the LWup from the long‐wave radiation scheme uses an average aerodynamic surface temperature
instead of the radiative skin temperature of the facets. SLUCM calculates this aerodynamic surface tempera-
ture diagnostically from the air temperature, QH and the modeled exchange coefficient of heat. During our
analysis we found that this aerodynamic surface temperature varies substantial from the radiative skin tem-
perature of the urban facets. Since the BEP + BEM and BEP schemes use a similar approach to calculate the
LWup (i.e., via the radiative skin temperature) we used the same approach forWRF‐SLUCM‐Noah. Note that
this difference does not affect Q∗ at the surface, as this LWup is from the urban scheme, using the radiative
temperature.

This study does not optimize the model performance but tries to understand how uncertainty in forcing and
parameters affect key physical processes in the urban surface and overlying atmosphere. However, if one is
mainly interested in improving model performance through optimization there are a series of potential tech-
niques to do so. Loridan et al. (2010) and Zhao et al. (2014) used ensemble Kalman filtering andMonte Carlo
approach to optimize the urban surface parameters in order to improve the SLUCM' s performance, with
very promising results. For offline or even limited 1‐Dmodel simulation that might be computationally pos-
sible, but for full 3‐Dmodel simulations the computational cost might be prohibitive. Inverse modeling with
the adjoint model of WRF (Zhang et al., 2013) might be more efficient.

Here we use modeled ΔT50m rather than the modeled T50m (following Sterk et al., 2013) to minimize the
impact of biases introduced during spin‐up phase and to allow analysis of model response to changes in
atmospheric forcing and surface parameters separately for day and night. Thus we are able to easily distin-
guish compensating effects on T50m between day and night (e.g., changes in λwall and CHheat) or carryover
effects from day to night (e.g.,ADVθ andQf). Moreover, the changes inΔT50m during day or night are directly
linked with the changes in radiation and surface energy balance. This allows us to identify more accurately,
which atmospheric forcing or surface parameter changes explains the bias between model and observations
or differences between different model setups.

6. Conclusions

In a coupled NWP‐UCM model setup, surface parameters and atmospheric forcing are the primary sources
of uncertainty and strongly affect model performance. With WRF‐SLUCM‐Noah we investigate the impact
of these sources during a 1‐day clear‐skies period in London. The impact of change in atmospheric forcing
and surface parameters to the surface radiative balance, energy partitioning, and intensity of turbulent mix-
ing are calculated together with the coupling between the surface and the overlying atmosphere.

Both atmospheric forcing and surface parameters changes impact the model's performance. For the radia-
tive balance, AOD, aroof,CO2, and akanda are the most influential parameters, each impacting different
terms. SWU and LWU cause the bias in modeled Q∗. Correcting for the radiative bias improves the radia-
tive heating and radiative cooling performance. For the surface energy flux partitioning, the model has
the largest response to changes in CHheat,akanda,Qf,Cwall, and λwall. Changes in near‐surface atmospheric
stability are comparable in magnitude from most changes in atmospheric forcing and surface parameters,
with different orientation for each of the sources. Changes in CHheat have the largest impact on daytime
Rib, while ADVheat, akanda,Cwall and λwall are more critical at night. A feedback mechanism between
increasing daytime T50m and increase in nocturnal radiative cooling is identified. Its intensity is strongly
depended on the wind shear.

We identify some compensating effects between atmospheric forcing and surface parameters changes in this
analysis. This is mainly for surface parameters related to thermal storage (e.g., furban,Cwall and λwall) and
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between CHheat and akanda, which are linked to the surface atmosphere coupling. Both AOD and aroof
impacts onQ∗ and surface flux partitioning are similar. The reported compensating effects, evident from sin-
gle variable analysis, are reduced by using the 2‐variable space analysis (the so‐called the processes dia-
grams). Various atmospheric forcing and surface parameter changes have similar effects, if not separated
by time of day. This supports the Best and Grimmond (2015) suggestion to analyze model responses under
different turbulence regimes.

We highlight that it is possible to identify physical description differences between the schemes used in our
WRF‐SLUCM‐Noah setup. This is easier when key physical mechanisms are missing from a scheme (e.g.,
lack of aerosol effects on SWD) but is more difficult when the process is not covered by the atmospheric for-
cing range of analysis (e.g., explicit entrainment flux in YSU compared to MYJ). This analysis can also iden-
tify compensating effect between atmospheric processes, as demonstrated by the fact that decreasing ADVθ

shows a similar effect to including explicit entrainment. We could identify differences in the UCM schemes
through the use of changes in the surface parameters and link them to differences in the physical complexity
of the schemes, which allows to link uncertainty to either changes in atmospheric forcing or surface para-
meters. However, this approach has clear limitation (e.g., inability to explained the difference in nocturnal
Q∗ between SLUCM and BEP + BEM).

Appendix A: Definition for Symbols

Data Availability Statement

The data set for this research (Tsiringakis et al., 2020) is publicly available in the Zenodo repository (https://
zenodo.org/record/3897222, doi: 10.5281/zenodo.3897222).

Table A1
List of Definitions for the Symbols/Abbreviations Used to Define Atmospheric Forcing Components, Surface Parameters,
Tested Parameterization Schemes, and Other Relevant Variables

Symbol Definition

akanda Kanda parameter
aroof Roof albedo
ADVθ Advection of potential temperature
ADVq Advection of moisture
AOD Aerosol optical depth
BEP Building environment parameterisation (Martilli et al., 2002)
BEP+BEM BEP + Building Energy Model (Salamanca & Martilli, 2009)
CAMsw CAM short‐wave radiation scheme (Collins et al., 2004)
CAMlw CAM long‐wave radiation scheme (Collins et al., 2004)
CO2 Concentration of CO2 in ppm
CHheat Exchange coefficient of heat
CHmom Exchange coefficient of momentum
Cwall Heat capacity of walls
ΔQs Storage heat flux
ΔT50m Difference between T50m,max and T50m,min
ΔTskin Difference between Tskin,max and Tskin,min
furban Urban fraction
λwall Thermal conductivity of walls
LWD Long‐wave downward radiation
LWU Long‐wave upward radiation
MYJ Mellor‐Yamada‐Janijc boundary layer scheme (Janjic, 1994)
Qf Anthropogenic heat flux
Q∗ Net all‐wave radiation
QH Sensible heat flux
QE Latent heat flux
QNSE Quasinormal Scale Elimination boundary layer scheme (Sukoriansky et al., 2005)
SWD Short‐wave downward radiation
SWU Short‐wave upward radiation
SLUCM Single‐layer urban canopy model (Kusaka et al., 2001)
YSU Yonsei university boundary layer scheme (Hong et al., 2006)
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