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A B S T R A C T   

Urban areas are vulnerable to intensive heatwave periods. In order to understand heat stress in cities, the single- 
layer urban canopy model (SLUCM) coupled with the weather research and forecasting model (WRF) have been 
widely used to quantify and forecast the urban climate. However, the model performance in WRF/SLUCM is 
limited by the coarse classification of urban canopy parameters (UCPs), and further improvements may require 
great effort. Therefore, this study was a new attempt at organizing the gridded UCPs in the ‘National Urban 
Database and Access Portal Tool (NUDAPT) approach’ and exploring its application in the WRF/SLUCM model in 
four simulations with contrasting UCP configurations. The model performances were evaluated for a heatwave 
period in 2018 in the typical Chinese city of Xi’an, using a near-surface observational network consisting of 39 
meteorological stations in various urban spatial categories. We found that the increased accuracy in UCPs 
brought about gradual and overall improvements in the urban heat island effect (UHI) and air temperature (Ta), 
and had relatively slight effects on absolute humidity (ρν) and wind speed (WP). Furthermore, the station-to- 
station bias analyses indicated that optimization efficiency varied among urban spatial categories. Areas with 
an open form or areas densely covered with vegetation showed constant sensitivity to the increasing refinements 
of UCPs. Input of the gridded and multi-dimensional descriptions of urban canyon geometry contributed to more 
accurate results in dense urban areas and areas with mixed and inhomogeneous morphology.   

1. Introduction 

Heatwave periods, which are increasing in frequency, intensity and 
duration due to climate change, pose a threat to human health and safety 
[1]. In urban areas, elevated temperatures caused by high-density con-
structions and impervious pavements negatively affect outdoor thermal 
comfort and promote heat-related illnesses [2–5]. To alleviate urban 
heat stress and help develop mitigation strategies, studies on urban 
climate, urban heat island effects, and thermal comfort have received 
more attention in recent years [6–8]. An accurate qualification and 
urban climate prediction could provide much needed support for these 
studies [9,10]. 

Currently, the weather research and forecasting model (WRF) is one 
of the most advanced numerical weather prediction systems [11] and it 
is also a suitable modeling method for mesoscale weather simulations 
[12]. Considering the effects of the urban canopy layer, the single-layer 

urban canopy model (SLUCM) coupled with the WRF model could es-
timate the transfer of energy and momentum between an urban surface 
and the atmosphere and provide reliable simulations of urban areas 
[13]. 

However, accurate quantification of the urban climate using WRF/ 
SLUCM is currently still a challenge [9]. In the early attempts at 
WRF/SLUCM modeling, all urban areas were uniformly set with the 
same urban canopy parameters (UCPs). This was too simplistic to 
represent the urban geometry and it was later replaced by three urban 
land-use types. Previous studies illustrated that using a three land-use 
class strategy could improve the model performance [14–16], with 
more realistic turbulent energy partitioning and urban boundary layer 
(UBL) height [17]. Unfortunately, in heterogeneous cities experiencing 
rapid development, the three land-use class strategy may lead to dis-
tortions of urban spatial characteristics and overestimations of 
nocturnal air temperature and surface wind speed [15–17]. Therefore, a 
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more detailed input of UCPs in WRF/SLUCM is needed to correct for the 
inaccurate description of urban morphological classification and to 
improve the model performance in WRF/SLUCM. 

Recently, the digital parameterization of urban morphology has 
become more straightforward with the development of remote-sensing 
techniques and spatial statistics methods. Some neighborhood scale 
studies have extracted the building typologies and urban textures from 
typical residential areas or downtown districts and applied it in the UWG 
[18,19] or CFD [20] program to simulate the urban climate condition. 
Parametric simulations and sensitivity analysis are used to reveal the 
relative impacts of urban characteristics, building systems and building 
design strategies on the estimates of urban air temperature, urban en-
ergy consumption [18,19] and vertical velocity [20]. 

Meanwhile, for larger city scale studies, UCP datasets with high 
resolutions covering the built-up areas, like the National Urban Data-
base and Access Portal Tool (NUDAPT) [21], are available for an 
increasing number of cities and these could be applied to WRF/SLUCM 
simulations. To date, few studies have discussed the SLUCM model re-
sults based on NUDAPT data due to the lack of direct input of UCPs. 
Alternatively, NUDAPT data are applied in the multi-layer urban canopy 
scheme, e.g. the Building Effect Parameterization (BEP) and Building 
Energy Model (BEM) [22–24]. Otherwise, the NUDAPT data are partly 
used in the SLUCM model, i.e., by only taking the urban fraction into 
account to improve the model results of air temperature [16,25,26]. The 
improvements that could be realized by using more detailed UCPs on 
WRF/SLUCM performance have not yet been fully revealed. 

In this study, we provided a transformation from the urban 3D 
building dataset into the gridded UCP dataset in the NUDAPT approach 
for Xi’an (China), suitable for the WRF/SLUCM model. We carried out 
four sensitivity simulations with contrasting levels of UCP configura-
tions, from one or three class datasets to gridded UCP data. The model 
performance was evaluated against observed air temperature at 2 m 
(Ta), 10-m wind speed, absolute humidity at 2 m (ρν) and the urban heat 
island intensity at 2 m (UHI). In addition, a high-density observational 
network containing 39 stations with various urban spatial categories 
was used for further station-to-station model evaluation in order to 
reveal the optimization efficiency in various urban spatial categories. 
Note that the universality and representativeness of these spatial cate-
gories in a typical Chinese city as Xi’an were proved in our previous 
study [27]. 

The description of the WRF/SLUCM and designing sensitivity simu-
lations are presented in Section 2. Comparison of model results and 
surface variables are discussed in Section 3, and the associated Student t- 
tests to prove the statistical significance of these differences are pre-
sented in the Appendix (Tables S2 and S3). The discussion in Section 4 
explores the limitation and representativeness of the results and pro-
poses the possibly further studies. Conclusions are discussed in section 5. 

2. Materials and methods 

2.1. Modelling system 

This study used the integrated WRF/urban modeling system (version 
3.7.1) coupled with the single-layer urban canopy model (SLUCM), 
which was embedded within the Noah-LSM scheme of WRF [11]. In the 
modeling efforts on coupling SLUCM, the urban fraction (FRC_URB), 
which specifies the fraction of the surface that is covered by impervious 
material in a grid cell, played an important role [13]. More specifically, 
the calculations of surface fluxes and surface temperature were executed 
separately for two tiles (Fig. 1), i.e. the impervious surface was provided 
by the SLUCM model and the so-called natural surface by the Noah LSM 
model. These two independent results were then weighted and summed 
to obtain the combined result. The FRC_URB was used as the weighting 
factor. Considering the obvious differences in the composition of surface 
energy fluxes between impervious and natural surfaces, the FRC_URB 
could have directly influenced the grid result. 

Furthermore, within the impervious part of a grid cell, the urban 
morphology was simplified and made into an infinitely long street 
canyon (Fig. 1), which consisted of three urban surfaces (roof, wall, and 
roads), for which the surface energy budgets were separately solved 
[13]. Also, the internal physical processes like shadowing, reflections, 
and trapping of radiation were considered in the SLUCM model. The 
rationale behind the use of more detailed UCPs originates in building a 
more accurate and representative urban canyon in the SLUCM model, 
which may effectively improve the modeling performance. 

2.2. Input approach of urban canopy parameters in WRF/SLUCM 

Two approaches were used to specify the UCPs in the WRF/SLUCM 
to present the canyon geometry. The first one was the traditional lookup 
table, which classified the urban areas into three land-use types mainly 
according to the urban fraction (FRC_URB): (1) low-density residential 
(LI) with a value of 0.3–0.8, (2) high-density residential (HI) with a 
value of 0.8–1, (3) commercial or industrial (COI) indicating all highly 
developed areas not classified as HI. The table also related the average 
value of basic morphological indicators of three land-use types, like 
building height (ZR), building width (BW), street width (SW), anthro-
pogenic heat flux (AH) and so on. In this approach, it would be hard to 
avoid the underestimation of urban morphological heterogeneity, 
especially in a city with complex and diverse spaces. 

To compensate for this, the gridded-UCPs approach provided each 
grid cell in the city with a unique combination of UCPs. The gridded- 
UCPs dataset presented advanced morphological indicators in the 
NUDAPT way, which were not available in the table approach, such as 
plan area fraction, area-weighted mean building height, building surface 

Fig. 1. Schematic of the WRF/SLUCM model, presenting the coupling process of the SLUCM and LSM models. In each grid cell, the area proportion of the impervious 
surface was FRC_URB, and the natural surface was 1-FRC_URB. The real urban morphology was simplified to an infinitely long street canyon, which is defined with 
ZR (mean building height), BW (mean building width) and SW (mean road width) in meters. The value of AH (anthropogenic heat) as traffic and industry emissions 
were taken from the lookup table, according to land-use types. 
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to plan area ratio and frontal area indexes for 8 directions [21]. These 
indicators were not only used to redefine the calculation of three urban 
surfaces, but also provided multi-dimensional information for the 
parameterized canyon geometry. 

2.3. Model configuration 

The study area is Xi’an (33.4–34.5◦N, 107.4◦-109.5◦E), a typical 
Chinese city and the capital of the Shanxi province (Fig. 2). Xi’an 
experienced a warm and dry summer (June, July and August) with a 
mean temperature of 27.1 ◦C between 2014 and 2017 [28]. The central 
urban area of Xi’an covered an urban constructional area of 460 km2 and 
supported a population of 4.67 million in 2016 [28]. The local topog-
raphy with hills in the north and east surrounding the city restricts the 
diffusion of heat. The UHI effect was prominent in Xi’an with a 
maximum intensity of 9 K in July [29]. 

The heatwave period, from the 18th to the 26th of July 2018, was 
selected to carry out the model experiment. According to the meteoro-
logical record spanning the past five years, this heatwave period pre-
sented ideal circumstances for our study with a relatively long duration 
and a prominent diurnal temperature cycle. (Fig. 3a). Since the UHI is 
one of the key indicators discussed in this study, we selected weather 
conditions favorable for the UHI. A few days with a short-time rainfall at 
the beginning and at the end of the heatwave period have been 
excluded, so that the clear sky and calm wind situations would dominate 
the simulation period. This approach excluded effects of model de-
ficiencies due to cloud cover and high wind speeds and improved the 
accuracy of sensitive experimental results, only for the conditions that 
were critical. 

Based on the comprehensive consideration of computational cost and 
model performance, we adopted the re-initialization strategy in this 
study, which refered to a series of short-time simulation integrations. 
This was needed since one long weather forecast would likely be 
vulnerable to errors since the synoptic scale weather conditions may 
have differed in the model as compared to the observations on that time 
scale. More specifically, the WRF model was re-initialized every 72 h, so 
the whole simulation process consisted of four individual runs (Fig. 3b). 
The first 24 h in the simulation were spin-up and removed. A total of 
168 h (from LST 2018/7/19 0:00 to LST 2018/7/26 00:00) of simulation 
results were used in the analysis. The re-initialization strategy more 
accurately simulated the nocturnal temperature and contributed to an 
overall high correspondence with observations (Fig. 3c), which was 
consistent with the findings of Jänicke et al. [26]. Other important 
model settings are displayed in Table 1. 

Three nested domains were set up and the third one contained the 
Xi’an city which we focused on (Fig. 2). The original data for land use 
and land cover were obtained from the United States Geological Survey 
(USGS), with a spatial resolution of 1◦. Considering Xi’an is a city 
experiencing rapid development, the USGS data originating from 1991 

may have presented a delayed description of the current land-use 
characteristics. Hence, some detailed adjustments were carried out ac-
cording to the latest remote sensing land-use data from Tsinghua Uni-
versity (FROM-GLC 2017) [30]. For example, the urban fraction 
(FRC_URB) in the third domain was derived from the FROM_GLC 2017 
data with a resolution of 30 m and re-summarized to 1 km by using 
ArcGIS. 

2.4. Experimental set-up 

UCPs used in this study were derived from the urban digital 3D 
building dataset, which was provided by the Department for Architec-
ture of Xi’an Jiaotong University [27]. First, all UCPs were summarized 
as gridded data with the resolution of 1 km2. Then, the basic lookup 
approach was used to note the average value of three land-use types, but 
only for basic morphological indicators (Table 2). In the gridded-UCP 
dataset, additional calculations of advanced morphological indicators 
were carried out and all gridded canyon geometries were reparame-
trized and provided to the model. The derivations of these indicators in 
two approaches are presented in the Appendix (Table S1). The AH values 
applied in the simulations were the average values of three land-use 
types [31], with the exception of 1U which took the average value of 
Xi’an city. 

A total of four sensitivity simulations were used to evaluate the 
sensitivity of UCP accuracy on the SLUCM model performance (Fig. 4). 
They were defined with the gradual accuracy of UCP configuration and 
other settings were consistent. The UCPs used in the first two simula-
tions were found in the lookup table. While 1U homogenized the whole 
urban area as high-density residential (HI), 3U adopted three land-use 
types. The third simulation (3U + FRC) employed a mixture input 
approach, taking the gridded urban fraction while the other UCPs 
remained the same as in 3U. The last simulation (NU) utilized all data 
from the gridded UCPs dataset for the central urban area of Xi’an. 3U +
FRC had more horizontally detail information than 3U, to specify the 
impervious proportion in each grid (Fig. 4). NU had also gained more 3D 
building information than 3U + FRC, which helped for more accurate 
descriptions of urban canyon geometry. 

2.5. Derivation of urban wind speed from direct model output 

Considering the urban canopy effects on the urban surface wind, the 
extraction of model results of 10-m wind was divided into two parts. The 
wind speeds at rural stations were directly exported by the WRF model 
and those at urban stations were calculated using the urban canopy wind 
profile following MacDonald (2000) [32]. The hourly grid-scale wind 
direction was determined using the WRF results at the first eta model 
level (approximately 104 m above the surface), which was also used as 
the reference to the corresponding frontal area index (λf ). Based on λf , 
the empirical constants for the straight canyon pattern (as used in 

Fig. 2. (a) Map of China with the location of Domains. (b) Locations of Guanzhong Basin, and locations of Domain 1 and Domain 2. (c) The location and topography 
of Xi’an, which is also the Domain 3. The blue lines indicate the rivers and grey lines the roads. Source: GoogleMaps (R). (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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WRF/SLUCM) were determined from Table 4 [32]. These constants and 
the modeled wind speed at the first eta-level were used in Equation (1) 
to calculate the friction velocity (u*) and the wind speed at the height 
which the individual obstacles were not influencing the wind (uzw ), and 
Equation (2) to calculate the wind speed at obstacle roof height (uH) 
[32]: 

uz =
u*

k
ln
(

z − d
z0

)

(1) 

Here, uZ (m/s) is the wind speed at the height of first eta level or the 
height at which the individual obstacles are not influencing the wind. k 
is a constant known as the von Kàrmàn constant (k ≈ 0.4), d (m) is the 
zero-plane displacement, and z0 (m) is the roughness length. 

uH = uzw −
u*

B
ln
(

A + Bzw

A + BH

)

(2) 

Here, A and B are experimentally determined using Table 4, zw (m) is 
the height which the individual obstacles are not influencing the wind, H 
(m) is the roof height of obstacles. 

Finally, the results of wind speed at these key heights were used to 
diagnose the 10-m wind speed inside the urban canopy according to 
equation (3) [32]: 

u10 = uHe

(

9.6λf

(

10
H − 1

))

(3) 

Here, uH (m/s) is the wind speed at obstacle roof height H (m), and λf 

is the frontal area index. 
What we need to stress here is that the λf played vital roles in the 

calculations above and directly influenced the results of 10-m wind 
speed. The calculation of λf is differently set in the land-use table and 
gridded dataset. In the table, λf assumes a uniform value of normalized 
building height (h) instead. In the gridded dataset, λf was calculated in 
four wind direction regimes (0◦/180◦,45◦/225◦,90◦/270◦,135◦/315◦) 
according to its definition. We could infer that the λf from the lookup 
table was less accurate and affected the subsequent model results for 
wind speed. This was reflected in the diagnostic 10-m wind speeds using 
the λf from the table approach, which were always less than 0.2 m/s and 
obviously different from the observations. We explored the possible 
interference of inaccurate λf input in the WRF/SLUCM model. Since the 
modeled results of wind speeds at the height of the first eta level were 
nearly the same in all simulations, the WRF/SLUCM model may not have 
been influenced by the data source of λf . Therefore, to obtain more 
reliable results of diagnostic 10-m wind speeds, we took the actual 
values of λf from the gridded dataset and consistently applied them in 
the four simulations. 

2.6. Observations for model validation 

The simulation results were evaluated using a high-density local 
meteorology observation network, provided by the Xi’an Meteorological 
Bureau (Fig. 5). This network contains 39 stations, 38 of which record 
the air temperature (Ta, ◦C). 26 stations record wind speed (WP, m/s) 
and 20 stations provide relative humidity data which was later con-
verted to absolute humidity (ρν, g/m3). A few stations had missing 
observation data, details of which can be seen in Table S4. The 

Fig. 3. (a) The summary of duration and frequency of heatwave periods in Xi’an, from 2014 to 2018. The black bar indicates the heatwave period and the red bar 
indicates the simulation period used in this study. (b) Schematic of the re-initialization strategy (NU_S). The blue bars indicate the four short-time simulations in 
NU_S, and red bars indicate the 7-day simulation in NU_L. The first 24-h of each simulation were spin-up and marked in yellow. (c) The comparison of hourly modeled 
Ta from July 19–25, 2018 in XGX station. The blue line indicates the result of the re-initialization strategy (NU_S), and the red line is the result of the 7-day simulation 
(NU_L). See Fig.5 for site locations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Summary of model settings.  

General Setting  

Time (UTC) Total duration: 2018.7.18 00:00–2018.7.26 00:00 
Four re-initialization simulations S1: 2018.7.18 
00:00–2018.7.21 00:00 S2: 2018.7.20 00:00–2018.7.23 
00:00 S3: 2018.7.22 00:00–2018.7.25 00:00 S4: 
2018.7.24 00:00–2018.7.26 00:00 

Grid setting D1:68*68, resolution:15kmD2:201*111, 
resolution:3kmD3:61*61, resolution:1 km 

Vertical resolution 35 eta level 
Initial & boundary 

conditions 
1◦*1◦ six-hourly ECMWF data 

Parameterizations  
Land Surface NOAH 
Boundary layer MRF 
Microphysics WSM3 simple ice 
Longwave radiation Rrtm 
Shortwave radiation Dudhia  

Table 2 
Summary of Xi’an UCP data in the land-use table (URBPARM.TBL).  

LU_INDEX COI HI LI 

FRC_URB (%) 0.94 0.86 0.67 
ZR(m) 17.5 15.8 14.1 
SIGMA_ZED(m) 17.2 15.7 13.1 
ROOF_WIDTH(m) 11.2 11.8 13.5 
ROAD_WIDTH(m) 10.2 12.2 23.1 
AH (W/㎡) 50 40 15  
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instruments employed in this observational network were CAWS600RE, 
DZZ4 and CAWS600RT, with measuring error ranges of − 0.3 ◦C≤△T ≤
0.3 ◦C and − 0.2 m/s≤△V ≤ 0.2 m/s [33]. The sensors measuring air 
temperature and relative humidity were located 2 m above the ground 
and recorded instantaneous per minute values. The 60-min records were 
averaged to obtain hourly observed Ta and relative humidity, which was 
consistent with the modeled results. The sensors of wind were situated 
10 m from the ground and recorded instantaneous per second values. 

The hourly average wind speed was the 2-min moving average closest to 
the full hour over an interval of 1 s. The detailed information concerning 
the metadata and surrounding photos of these stations were presented in 
a previous paper [27]. 

This network contains 12 rural stations, 6 of which were located in 
historical ruins or undeveloped areas inside the city. The other 26 urban 
stations were classified into three land-use types, 9 stations for LI and 
COI respectively, and 8 for HI (Table 3). We found that these urban 

Fig. 4. Schematic of UCP configuration in four sensitivity simulations. The solid dot indicates one urban class, three hollow dots indicate three urban classes, and the 
dashed line indicates the data was not classified and each grid cell had a specific value. 

Fig. 5. The land-use of Xi’an according to FROM-GLC 2017. The locations of meteorological stations are identified and the shapes indicate various spatial categories.  

Table 3 
Summary of land-use type and spatial category of urban stations.  

Land_use type Name Spatial categories Land_use type Name Spatial categories Land_use type Name Spatial categories 

LI BQSD Bareland HI XHL Bareland COI NM Mixed 
HCSF Bareland YY Bareland XQ Normal 
JH Bareland DZKD Mixed BG Normal 
SXBG Green YXL Mixed SB Normal 
HZZX Mixed SLP Mixed AZZX Normal 
SZF Mixed FQL Normal XAZX Normal 
FRY Mixed BQZF Normal XASW Normal 
LCB Mixed XGX Normal XZ Fully-developed 
BHZX Normal   XA Fully-developed  
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stations could be subdivided according to the urban morphological 
characteristics, which further supports the station-by-station evalua-
tions of the UCPs sensitivity in the WRF/SLUCM model. 

Consistent with the strategy used in the UCP configuration, we 
retained the indicators of urban fraction and canyon geometry as key 
variables to predict the spatial categories. We adopted our previous 
classification method of urban spatial categories [27], using the vege-
tation fraction (Fveg) which is the opposite of the FRC-URB and 
sky-view factor (SVF). Therefore, the 26 urban stations were classified as 
Mixed space (SVF + Fveg>1), Normal space (0.6 ≤ SVF + Fveg≤1) and 
fully-developed Space (SVF + Fveg<0.6) [27]. Green space (Fveg >0.4) 
and Bare land (SVF>0.9) were added here to complete the system. The 
distribution and detailed information about the spatial categories of 
these stations are presented in Fig. 5 and Table 3 respectively. 

3. Results 

3.1. Surface air temperature 

In this study, we used the 2-m air temperature (Ta) as the reference 
air temperature. The overall root mean squared error (RMSE) of Ta in 1U 
was 1.76 ◦C and the median absolute error (MEAE) was 1.14 ◦C, and that 
in 3U was to 1.77 ◦C and 1.15 ◦C (Table 5). According to these results 
and comparing them with the results from other cities [14–16], we could 
infer that the WRF/SLUCM model performed reasonably well in Xi’an. 
We found that the further efforts of fine-resolution UCPs contributed to 
improvements in overall model Ta performance, especially for the urban 
stations. The RMSE of urban stations in the 3U + FRC was 1.68 ◦C and 
improved by 1.61 ◦C in NU (Table 5). Additionally, the statistical sig-
nificance of these improvements were established using the Student 
t-tests found in Tables S2 and S3. 

These improvements were dominated by a decreased modeled Ta at 
night, which was normally overestimated in the urban area [16,17]. The 
time series of Ta for four stations with various land-use types (Fig. 6) 
indicate that the model performed uniformly well during the daytime 
with biases within the range of ±0.2 ◦C. However, more obvious dif-
ferences in the four simulations appeared at night. For example, at the 
SZF station for the LI land-use type (Fig. 6), the average bias at night was 
1.85 ◦C in 1U, which was 1.96 ◦C at LST 6:00 a.m. The overestimation of 
nocturnal Ta was slightly corrected in 3U and 3U + FRC, with an average 
error of 1.68 ◦C and 1.52 ◦C, respectively. While the NU simulation 
showed a more sensitive reaction to cooling effects during the night, the 
average error further dropped by 0.11 ◦C. The modeled minimum 
temperature was not overestimated in NU, and the modeled error 
decreased to − 0.41 ◦C. 

The evaluation of the overall Ta simulation, based on hourly results 
from all stations, presented progressive changes from 1U to the NU. This 
means that we could carry out a hierarchical evaluation of all stations 
according to their bias analysis, as stations with large errors (RMSE>2 
◦C), stations with medium errors (1.6 ◦C < RMSE<2 ◦C), and stations 
with minor errors (RMSE<1.6 ◦C). Fig. 7 showed that the percentage of 

stations with a large error had 16% in 1U, decreasing to 14% in 3U, 11% 
in 3U + FRC and 8% in NU. Also, the largest RMSE among these stations 
dropped from 2.74 ◦C in 1U–2.18 ◦C in NU (Fig. 7a). Taking a closer look 
at the individual effects of contrasting UCP configurations, we noticed 
that the modeled performances of Ta were similar in 1U and 3U. This 
indicated that the UCPs categorized according to land-use had no added 
value in our study due to the complexity and diversity of the urban 
morphology in Xi’an. The gridded urban fraction in 3U + FRC accurately 
specified the surface evapotranspiration of these areas and improved the 
model performance, the percentage of stations with minor errors 
increasing from 14% in 3U–32% in 3U + FRC. The second improvement 
of the modeled Ta benefited from the gridded building information in 
NU, which was weaker but more comprehensive. 32.5% of stations had a 
better result compared with that in 3U + FRC, and the proportion of 
stations with large errors further decreased to 11%. 

In addition, a station-to-station bias analysis indicated that optimi-
zation effects may have differed between stations with various land-use 
types (Fig. 7b). Generally, stations with the land-use attribute LI 
benefited more than other stations, the RMSE falling by an average of 
0.2 ◦C per simulation from 1U to NU (Fig. 7b). This effect may be 
explained by the morphology of these LI stations, since most of them are 
open space or parkland, which were classified as Green space, Bare land 
and Mixed Space in this study. Meanwhile, the HI and COI stations 
mainly consisted of Normal space and Fully-developed space, the 
gradient decrease of RMSE from 1U to 3U + FRC was less than 0.05 ◦C, 
and from 3U + FRC to NU was about 0.1 ◦C in some stations. 

First, to explain the improvements for the LI stations, we noticed 
their actual FRC_URB values deviated greatly from the values used in 
1U, which was the average for the whole city. Thus, the corrections of 
FRC_URB with the average of three land-use types in 3U, partly avoided 
the misrepresentation of surface energy balance fluxes, according to the 
calculation principle of the WRF/SLUCM model. Considering flux ob-
servations were lacking for Xi’an, and the modeled Ta in NU showed 
closer agreement with the observed Ta, the modeled fluxes in NU were 
used to evaluate the performance of the other three simulations. Taking 
a typical Bare-land station (e.g. BQSD), the hourly mean surface sensible 

Table 4 
Calculated dimensionless values of several parameters for straight pattern of 
obstacles [32].  

λf  d/H zw/H  z0/H  A/H B 

0.05 0.066 2 0.048 − 0.35 0.56 
0.11 0.26 2.5 0.071 − 0.35 0.5 
0.16 0.32 2.7 0.084 − 0.34 0.48 
0.2 0.42 1.5 0.08 − 0.56 0.66 
0.33 0.57 1.2 0.077 − 0.85 0.92 

Here, λf is the frontal area index, d (m) is the zero-plane displacement, and H (m) 
is the roof height of obstacles. zw (m) is the height which the individual obstacles 
are not influencing the wind, z0 (m) is the roughness length. A and B are 
experimental constants. 

Table 5 
Summary of model performance of various UCP configurations in four surface 
meteorological indicators.  

Variable Type Indicators 1U 3U 3U + FRC NU 

Ta(◦C) Overall RMSE 1.76 1.77 1.69 1.65 
MEAE 1.14 1.15 1.07 1.07 

Rural stations RMSE 1.77 1.76 1.73 1.73 
MEAE 1.18 1.23 1.21 1.17 

Urban stations RMSE 1.75 1.77 1.68 1.61 
MEAE 1.13 1.11 1.02 1.03 

WP(m/s) Overall RMSE 1.65 1.67 1.68 1.62 
MEAE 0.84 0.84 0.85 0.83 

Rural stations RMSE 2.22 2.26 2.26 2.17 
MEAE 1.35 1.41 1.31 1.30 

Urban stations RMSE 1.30 1.31 1.32 1.29 
MEAE 0.69 0.69 0.70 0.70 

ρν(g/m3) Overall RMSE 3.36 3.34 3.33 3.28 
MEAE 2.47 2.45 2.44 2.39 

Rural stations RMSE 3.05 3.07 3.07 3.05 
MEAE 2.02 2.09 2.04 2.10 

Urban stations RMSE 3.47 3.44 3.43 3.38 
MEAE 2.66 2.61 2.57 2.58 

UHI (◦C) Overall RMSE 1.61 1.56 1.54 1.47 
MEAE 1.02 0.99 0.99 0.94 

Daytime RMSE 1.57 1.61 1.59 1.61 
MEAE 1.03 1.09 1.07 1.07 

Nighttime RMSE 1.67 1.49 1.47 1.25 
MEAE 1.00 0.85 0.89 0.79 

The RMSE is the abbreviation of the root mean squared error, and the MEAE is the 
median absolute error. The daytime period is LST 7:00~20:00, which is after sunrise 
and before sunset. The nighttime is LST 21:00~6:00. Best performance in four 
simulations is indicated in bold, and worst performance in italic. 
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heat flux and latent heat flux are displayed in Fig. 8a. As BQSD was 
located in an open park, its actual FRC_URB was 0.61. This was much 
lower than the average value in 1U of 0.86, but close to that in 3U of 
0.68, according to the LI land-use. Consequently, the calculated sensible 
heat flux in 1U was overestimated by 36–80 W/m2 during the daytime, 
and 11–40 W/m2 at night (Fig. 8a). Compared with results using gridded 
UCPs, the results of sensible heat flux in 3U were nearly credible. The 
further improvements appeared in 3U + FRC adopting the actual 
FRC_URB as 0.61, with a more accurate simulation of latent heat. 
Especially for daytime, the underestimated latent heat flux in 1U had a 
20–110 W/m2 rise in 3U, and 6–36 W/m2 further rise in 3U + FRC. We 
found similar improvements in the Mixed Space stations, such as for the 

SZF station (Fig. 8b) and we will skip a repetitive discussion here. 
Secondly, the improvements of model performance for the HI and 

COI stations were determined by the gridded UCPs provided in NU, 
especially the advanced morphological indicators. Since most of the HI and 
COI stations were classified as Normal space, which are widely distrib-
uted in Xi’an city, the actual values of basic morphological indicators were 
close to those found in the land-use table. For example, for XGX station, 
we found similar surface heat fluxes in 1U, 3U and 3U + FRC (Fig. 8c), 
because of the same FRC_URB value in the land-use table and gridded 
dataset. However, this station had a special form with large-scale 
buildings and wider roads, which was quite different from the 
morphology summarized in the land-use table using advanced 

Fig. 6. Time series of hourly Ta in four representative stations with various land-use types, from July 19–25, 2018. The grey dots indicate the observation, and lines 
indicate the modeled results. See Fig.5 for site locations. 

Fig. 7. The comparison of Ta modeled performance in four simulations: (a) Cumulative relative frequency indicates the result of the hierarchical evaluation of all 
stations, according to their bias analysis. Stations with large errors (RMSE>2 ◦C) are yellow, stations with medium errors (1.6 ◦C < RMSE<2 ◦C) are grey, and 
stations with minor errors (RMSE<1.6 ◦C) are blue. (b) All 38 stations were divided into one rural and three urban classes, the results of four simulations at each 
station are represented by bars of different colors. See Fig. 5 for site locations. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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morphological indicators. Once the added information in NU provided a 
more accurate canyon representation in the WRF/SLUCM model, the 
results of surface-related variables as sensible heat fluxes and ground 
heat fluxes became more reliable. More specifically, the sensible heat 
fluxes and storage heat fluxes declined by 20 W/m2 in NU (Fig. 8c), due 
to the lower absorption of radiation by the relatively broad roads. 
Consequently, the canyon temperature (Tc) in NU showed different 
trends as compared with other simulations. Tc reached its daytime 
maximum at 14:00 LST, which was 10 K higher than others, and the 
nocturnal Tc was 5 K lower at night (Fig. 8d). Similar improvements due 
to gridded UCPs in NU also occurred in the Fully-developed space, and 
we will not repeat the description here. 

3.2. Surface wind 

Generally, the model performances for wind speed were similar in 
the four simulations and the NU showed slightly better results with an 
RMSE of 1.62 m/s and an MEAE of 0.83 m/s (Table 5). Fig. 9a showed 

that the number of stations with a relatively small error (RMSE < 1.4 m/ 
s) was more in NU and nearly the same in the other three simulations, 
and fewer stations with relatively high errors (RMSE >3.4 m/s) 
appeared in 3U + FRC and NU (Fig. 9a). The results in 3U and 3U + FRC 
implied the possibly negative effects brought by the three land-use class 
strategy in modeled wind speed, especially for urban stations. 

According to the station-to-station bias analysis in Fig. 9b, we found 
the most improvements for rural stations, especially in the historical 
ruins (DMG station), remaining villages inside the city (HCC station), 
and the urban parks (YY station and FRY station). These stations had 
relatively open forms and were sparsely built. The horizontal mixings 
were negatively affected by the surrounding urban areas. According to 
the time series in Fig. 10, NU had a more stable performance due to the 
accurate morphological description of these stations and the surround-
ings. The modeled wind speed in NU remained mainly within the range 
of 0.5–4 m/s and was rarely more than 5 m/s, which was the most 
consistent with the observations. By comparison, stations with more 
buildings, like Normal space and Fully-developed space, did not have 

Fig. 8. (a) and (b) are the time series of 
7-day average surface fluxes of two 
representative stations, classified into 
Bare-land space and Mixed space, 
respectively. The solid line represents 
sensible heat flux, and the dash line 
latent heat flux. (c) is the time series of 
7-day average surface flux inside the 
canopy in the XGX station, which is 
Normal space. The solid line represents 
sensible heat flux and dash line storage 
heat flux. (d) is the time series of 7-day 
average canopy temperature in the XGX 
station. See Fig.5 for site locations.   

Fig. 9. The comparison of wind speed modeled in four simulations: (a) Cumulative relative frequency indicates the result of the hierarchical evaluation of all 
stations, according to their bias analysis. Stations with large errors (RMSE >2.2 m/s) are yellow, stations with medium errors (1.4<RMSE <2.2 m/s) are grey, and 
stations with minor errors (RMSE <1.4 m/s) are blue. (b) All 26 stations were divided into one rural and three urban classes, the results of four simulations at each 
station are represented by bars of different colors. See Fig. 5 for site locations. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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better results in NU. For example, in XGX station, the deviations of 
modeled wind speed in the four simulations were typically less than 0.3 
m/s, and sometimes the results in NU were underestimated by 1 m/s at 
night (Fig. 10). 

3.3. Surface humidity 

To eliminate the influence of air temperature and other climatic 
factors, we adopted the absolute humidity (ρν,g/m3) at 2 m to compare 
the model performance of humidity in this study. The overall results of 
1U, 3U and 3U + FRC were similar with an RMSE around 3.34 g/m3. NU 
was better with an RMSE of 3.28 g/m3 and an MEAE of 2.39 g/m3 

(Table 5). 

This improvement from 1U to NU was also seen in the station-to- 
station bias analysis presented in Fig. 11a. The total number of sta-
tions with minor errors (RMSE <2.5 g/m3) and medium errors 
(2.5<RMSE <4 g/m3) were the same in 1U, 3U and 3U + FRC. Only in 
NU did the number of stations with large errors (RMSE > 4 g/m3) 
experience a small decrease of 10% (Fig. 11a). Furthermore, we found 
that most stations had a smaller bias in NU. From 1U to NU, the mini-
mum bias declined from 2.01 g/m3 to 1.98 g/m3, while the maximum 
RMSE declined from 4.7 g/m3 to 4.66 g/m3. Similarly, the sum of sta-
tions with an RMSE less than 2 g/m3 experienced a 10% increase, and 
those with an RMSE more than 4 g/m3 fell accordingly. 

More specifically, the most prominent improvements of ρν in NU 
were found for the urban stations, especially for the Green space (SXBG 

Fig. 10. Time series of hourly wind speed in four representative stations with various spatial categories, from July 19–25, 2018. The grey dots indicate the 
observation and lines indicate the modeled results. See Fig.5 for site locations. 

Fig. 11. The comparison of ρν modeled performance in four simulations: (a) Cumulative relative frequency indicates the result of the hierarchical evaluation of all 
stations, according to their bias analysis. Stations with large errors (RMSE>4 g/m3) are yellow, stations with medium errors (2.5<RMSE <4 g/m3) are grey, and 
stations with minor errors (RMSE <2.5 g/m3) are blue. (b) All 20 stations were divided into one rural and three urban classes, the results of four simulations at each 
station are represented by bars of different colors. See Fig. 5 for site locations. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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station), Mixed space (FRY station) and Bare-land space (JH and YY 
station) (Fig. 11b). These spaces were urban parks or undeveloped 
suburban areas, with a vegetation fraction of more than 20%. Compared 
to other urban areas, these stations were highly covered by grass, shrubs 
and trees, which led to enhanced evapotranspiration. The gridded UCPs 
in the NU could have helped to modify the urban fraction and canyon 
geometry in these stations, which could have contributed to more ac-
curate results of energy flux partitioning. The SXBG station experienced 
a gradual improvement, with RMSE decreasing from 4 g/m3 in 1U–3.92 
g/m3 in 3U, and from 3.84 g/m3 in 3U + FRC to 3.75 g/m3 in NU 
(Fig. 11b). However, when Normal space and Fully-developed space 
where highly paved by impervious material, the results of the modeled 
ρν were consistent among the four simulations. 

3.4. Urban heat island 

3.4.1. The comparison of model performance of UHI intensity 
In this study, the UHI effect refers to the 2-m air temperature dif-

ference between rural and urban environments. To calculate the UHI 
intensity, a suitable rural station was needed first. The selection of the 
rural station was based on three requirements: complete observation 
records, appropriate distance from the urban area, and located in the 
open countryside. The XIANYANG and the BQQXY stationqualified 
(Fig. 12a). The next step of selection was to minimize the warming ef-
fects brought by urban heat advection (UHA) in the rural station. Ac-
cording to the time series of the air temperature and the wind direction 
(Fig. 12b and c), the UHA effect was detected in the XIANYANG station 
in all simulations. Five nights during the modeled period, the XIA-
NYANG station located downwind of Xi’an city, had overestimated 
modeled Ta values. The BQQXJ station met the requirements and the 
UHA effect appeared only shortly during one night in 3U and 3U + FRC. 
Finally, the BQQXJ station was used as the rural reference station in this 
study, and showed a high correspondence of Ta with the observations. 

The modeled UHI intensity showed a substantial sensitivity to con-
trasting UCP configurations, especially at night (after sunset and before 

sunrise, LST 21:00–6:00). In 1U, because of the higher modeled Ta in 
urban areas, the nocturnal UHI intensities were overestimated with an 
RMSE of 1.67 ◦C (Table 5), which was consistent with previous studies 
[16,17]. With the input of basic morphological indicators in 3U, the 
overestimated UHI was effectively modified and the RMSE reduced by 
0.18 ◦C, and the RMSE in 3U + FRC was 1.47 ◦C (Table 5). The advanced 
morphological indicators in NU improved the model performance of UHI, 
and the RMSE decreased to 1.25 ◦C (Fig. 13a). 

Accordingly, the improvements in overall model performance were 
also reflected in each station. There was a general uptrend in the pro-
portion of stations with minor error (RMSE<1.4 ◦C) of the total number, 
which increased from 48% in 1U–68% in 3U, up to 84% in NU (Fig. 13b). 
Although few stations had worse results in 3U + FRC, the model per-
formance of most stations remained the same as 3U, and the maximum 
error decreased by 0.1 ◦C. The station-to-station bias analysis revealed 
that Mixed space, Green space and Bare-land Space had an average of 
0.23 ◦C decrease from 1U to 3U (Fig. 13c). The gridded and multi- 
dimensional information of the urban canyon in NU helped to 
describe the dense morphology in Fully-developed space, and the RMSE 
further decreased by 0.36 ◦C (Fig. 13c). In Normal space, the improve-
ments of UHI from 1U to NU was gradual and continuous, the RMSE 
declined 0.16 ◦C per simulation. 

3.4.2. The comparison of the modeled UHI distribution in the four 
simulations 

In the above analysis, we conducted a complete comparison of the 
UHI model performance with contrasting UCP configurations, based on 
25 urban stations in the observation network. In this section, we will 
explore the distribution difference of UHI intensity for the whole urban 
area in the four simulations. To display the UHI intensity more clearly, 
this comparison was carried out for the hour with the maximum UHI 
effect (UHImax), which was also representative of the whole modeled 
period. 

The selection approach of the typical hour is summarized in Fig. 14. 
First, according to the daily UHI summary from 25 urban stations, we 

Fig. 12. The overview of qualified rural station selection: (a) The location of the XIANYANG and the BQQXJ station. When the rural station was downwind of the 
city, the wind direction is marked in grey. (b) and (c) are time series of hourly modeled wind direction and Ta in four simulations from July 19–25, 2018, for 
XIANYANG and BQQXJ respectively. The shaded areas infer the wind direction that transferred urban heat advection to the rural stations. See Fig. 5 for site locations. 
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obtained a reference array with the information of the maximum 
modeled UHI intensity in each station. Then we marked these UHImax 
intensities in red. The 24 h in all of the days spanning the simulation 
period were examined until we found the hour with the most red marks. 
In this case, the UHI intensity on 2018/7/21 at 2:00 LST was the most 
consistent with the reference array and could be identified as the typical 
hour. 

The spatial distribution characteristics of modeled UHI were varied 
among the four simulations (Fig. 15). The modeled UHI was most 
prominent in 1U, most areas in the city experiencing a UHI of more than 
4.5 ◦C. It is worth mentioning that the high-UHI area where the UHI 
exceeded 5 ◦C occupied about 30% of the city surface area in 1U, which 
was much larger than the actual situation in Xi’an. We could infer that 
the overestimation of UHI was caused by the uniform UCP configuration 
in 1U, and the use of the three land-use subdivisions in 3U and 3U + FRC 
partly modify it. In 3U, the range of high-UHI areas were limited to the 
downtown area and extended along a north-south axis across the city. 
The similar distribution of UHI appeared in 3U + FRC with weakening 
effects, and the UHI intensity of the suburban area located in the north- 
east declined by 2 ◦C (Fig. 15). However, the UHI effects were still 
overestimated, especially in the northern and western areas that mainly 
consisted of developing spaces or urban-rural transitional areas. These 
areas were sparsely built and highly covered with impervious material, 
which was mainly classified as LI and HI land-use according to the value 
of FRC_URB. Obviously, the urban canyons of these areas were much 
more open than recorded in the table, which led to substantial over-
estimations of the UHI. Therefore, the gridded UCPs in NU played an 

important role in the accurate modeling of UHI effects in these areas. In 
NU, the modeled UHI intensity became more reasonable and decreased 
by 0.5–2 ◦C in most areas. The high-UHI area shrank to the downtown 
area and the dense high-rise residential area in the south, which was 
more consistent with the actual situation in Xi’an (Fig. 15). 

4. Discussion 

In this study, gradual improvements were shown for the WRF/ 
SLUCM model with contrasting UCP configurations. We found that the 
increased accuracy in UCPs brought about gradual and overall im-
provements of UHI and Ta, and had relatively slight effects for ρν and 
WP. These results were consistent with earlier studies dedicated to 
improving the modeled Ta performance in WRF/SLUCM using the 
subdivision of the urban land-use types [14–16] or 17 LCZ classes [24, 
34], and by taking the value of the urban fraction in the mosaic approach 
[16,26] or gridded dataset [25]. Our results present a complete process 
of model performance comparison, in which the UCP configuration goes 
from a land-use table to a gridded dataset. Furthermore, the above 
comparisons are not limited to the widely concerned Ta but include 
other surface variables synchronously, which might provide references 
for studies on comprehensive indicators such as human thermal comfort. 

Since we focused on the 2-m meteorological conditions, the evalu-
ation of model performance only involved four surface climate vari-
ables. Some studies state that other indicators, such as wind profiles and 
the boundary layer height [17,22], are also sensitive to the accuracy of 
UCPs. Thus, the comparison of model performance from these 

Fig. 13. The comparison of UHI modeled performance in four simulations: (a) the comparison of modeled UHI with observed UHI. (b) Cumulative relative frequency 
indicates the result of the hierarchical evaluation of all stations, according to their bias analysis. Stations with large errors (RMSE>2 ◦C) are yellow, stations with 
medium errors (1.4 ◦C < RMSE<2 ◦C) are grey, and stations with minor errors (RMSE<1.4 ◦C) are blue. (c) All 25 urban stations were divided into three urban 
classes, the results of four simulations at each station are represented by bars of different colors. See Fig. 5 for site locations. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 14. Overview of the selection of the representative hour for maximum UHI effect estimation.  
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perspectives deserves further study. This study only explores the model 
performance using the MRF scheme, which is widely used in the 
WRF/SLUCM model. Comparing improvements of fine-resolution UCPs 
in other boundary-layer schemes, such as the Shin-Hong ‘scale-aware’ 
scheme designed for sub-kilometer transition scales [35], would be an 
excellent follow-up to the current study. 

Finally, it is noteworthy to mention that the improvements may vary 
within the study area and modeled seasons [26]. We would like to un-
derline that this study only explored the model sensitivity for Xi’an, 
which is an inland city with a hot and dry summer. Thus, our results are 
more suitable for cities with a similar climate background. The 
conclusion may be different for coastal cities or cities with large-scale 
open water bodies where evaporation [25] and sea breeze [36] need 
to be considered. Moreover, Xi’an as a typical Chinese city has abundant 
and complex urban spaces, which is reflected in the observational sta-
tions used in this study (Table 3). This means that its urban morphology 
is hard to classify into a few categories, which leads to the obvious 
improvements in model performance with gridded UCPs. According to 
our results for Normal space, we could infer that the optimized effect 
may be weaker for a city with more uniform and homogeneous 
morphology. Therefore, other cities with different urban characteristics 
could infer the appropriate UCP configuration based on our results of 
station-by-station evaluations, which might provide a general reference. 

5. Conclusion 

In this study, we compared the performance of the WRF/SLUCM 
model in contrasting levels of UCP configurations and the results were 
evaluated using a high-density observational network of surface vari-
ables in Xi’an. We found that the temperature-related indicators such as 

Ta and UHI were substantially sensitive to the UCP refinement. The 
improved effects of detailed UCP inputs were determined, which spec-
ifies the urban fraction and accurately reforms the urban canopy ge-
ometry in the model. A more realistic grid-scale turbulent energy 
portioning was calculated to reduce the warm bias in temperature, 
especially during the night. Overall, the improvements in surface wind 
and humidity were relatively limited. 

In addition, the efficiencies of the improvements noted above were 
explored using station-to station bias analyses and we found variations 
in different urban spatial categories. Generally, the spaces with special 
morphology were more sensitive to the input accuracy of UCPs. For 
example, the areas highly covered by vegetation (Green space) and areas 
with open forms (Bare land Space) showed constant sensitivity to the 
increasing refinements of UCPs. The most significant improvement was 
seen using the input of gridded urban fraction, which accurately speci-
fied the surface evapotranspiration in these areas. The dense area (Fully- 
developed space) and areas with complex and mixture morphology 
(Mixed space) had better results using the gridded UCPs in the NUDAPT 
approach, which provided more detailed parameterizations of canyon 
geometry. The Normal space which was widely distributed in the urban 
area showed relatively small but continuous optimizations in UCP 
refinement. 

Although limited spaces in the city exhibit special forms, it is 
important to note that these areas always presented differently in 
thermal environments and wind fields. The cooling effects seen in urban 
parks and elevated temperatures in dense areas may have a strong in-
fluence that spans kilometers over the surrounding areas. Therefore, the 
improvement in these spaces by applying high-resolution UCPs could 
also help accurately estimate the thermal distribution in the whole 
urban area. 

Fig. 15. The modeled UHI distribution in four simulations, at LST 2018.7.21 2:00 a.m., which is the hour with maximum UHI effects.  
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