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Understanding and prediction of the stable atmospheric boundary layer is challenging.
Many physical processes come into play in the stable boundary layer (SBL), i.e.,
turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent
and gravity wave drag (GWD). The development of robust stable boundary-layer
parameterizations for weather and climate models is difficult because of the multiplicity
of processes and their complex interactions. As a result, these models suffer from
biases in key variables, such as the 2-m temperature, boundary-layer depth and wind
speed. This short paper briefly summarizes the state-of-the-art of SBL research, and
highlights physical processes that received only limited attention so far, in particular
orographically-induced GWD, longwave radiation divergence, and the land-atmosphere
coupling over a snow-covered surface. Finally, a conceptual framework with relevant
processes and particularly their interactions is proposed.
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INTRODUCTION
The atmospheric boundary layer over land experiences a clear
diurnal cycle driven by that of the incoming solar radiation.
During the evening transition period, the Earth’s surface radia-
tion budget turns negative due to longwave radiative loss and so
the surface cools to a temperature below that of the air above.
Consequently, the potential temperature increases with height,
producing a stable boundary layer (SBL). SBLs prevail at night,
but also during daytime in winter in mid-latitudes, in polar
regions, and during daytime over irrigated regions with advec-
tion. The SBL is governed by a multiplicity of processes such
as turbulence, radiative cooling, the interaction with the land
surface, gravity waves, katabatic flows, fog and dew formation.
Despite extensive earlier research, these processes and their inter-
actions are not sufficiently understood, primarily because of their
diversity and their general non-stationarity, which prevent an
unambiguous interpretation of observations (Mahrt, 2007, 2014;
Fernando and Weil, 2010). This ambiguity is a major obstacle to
the development of model parameterizations. As a result, the SBL
is inadequately represented in weather and climate models (e.g.,
Beljaars and Viterbo, 1998; Bechtold et al., 2008; Medeiros et al.,
2011; Steeneveld et al., 2011; Kyselý and Plavcová, 2012; Tastula
et al., 2012; Sterk et al., 2013; Bosveld et al., 2014). For instance,
Atlaskin and Vihma (2012) studied the dependence of the 2-m
temperature bias in multiple limited-area models on atmospheric
stability for a winter period in Europe, and they found a warm
bias in the 2-m temperature, increasing rapidly with stability.

Some models overestimate surface vegetation temperatures
during calm nights (e.g., Steeneveld et al., 2008; Atlaskin and
Vihma, 2012), while other models experience unrealistic decou-
pling of the atmosphere from the surface, resulting in so-called
runaway surface cooling (e.g., Mahrt, 1998; Walsh et al., 2008).

This contrasting behavior depends on differences in model for-
mulation, resolution, and land-use properties. Furthermore, in
order to obtain accurate forecasts of the synoptic flow, atmo-
spheric models generally require a larger turbulent drag at the
surface and in the boundary layer than can be justified from field
observations (e.g., Holtslag et al., 2013). Hence the model rep-
resentation of turbulent transport is generally based on model
performance rather than on a physical basis. Unfortunately, the
enhanced drag results in an underestimation of the wind turning
with height within the SBL (Svensson and Holtslag, 2009). The
SBL depth is usually too high, and the low-level jet speed underes-
timated when compared to observations. Also, models appear to
underestimate the near-surface temperature and wind-speed gra-
dient, and their diurnal cycle (Edwards et al., 2011). Those issues
occur typically under very stable conditions. Moreover, model
results are very sensitive to parameter values in the turbulence
and orographic drag schemes (e.g., Beljaars et al., 2004; Sandu
et al., 2013), which implies that it is challenging to achieve a
high model skill for a wide range of states of the atmosphere-soil-
vegetation system, and that compensating errors make it difficult
to identify deficiencies in individual schemes. For these reasons,
an enhanced understanding of the SBL and a more physical repre-
sentation of the SBL in models is required. The overall aim of this
mini-review is to present briefly the state-of-the-art, highlight the
recent research activities on physical processes that received only
limited attention so far, and to build a picture of the key processes
and their interactions.

This review is organized as follows. Section Societal Impact
summarizes the societal relevance of SBL processes. Section
Physical Processes provides an overview of the physical processes
acting in the SBL, their role, their interconnections and relevance
for different SBL regimes. Section Role of SBL in Climate Debate
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briefly addresses the role of the SBL in understanding climate
change. Finally, conclusions are drawn in Section Conclusion.

SOCIETAL IMPACT
The SBL is relevant to numerous applications in society. For
instance, correct forecasting of near-surface temperatures and
wind speed may improve road de-icing, as well as timely warnings
to the transportation sector for low visibility caused by noctur-
nal fog or haze (van der Velde et al., 2010; Cuxart and Jiménez,
2011; Bartok et al., 2012). Agriculture relies on accurate near-
surface frost forecasts to take measures to protect plants and yields
(Prabha et al., 2011). Air quality forecasts and CO2 inverse mod-
eling studies call for reliable estimates of boundary-layer depth,
wind speed, drainage flows, and turbulence intensity (Salmond
and McKendry, 2005; Gerbig et al., 2008; Tolk et al., 2009). The
wind energy sector requires hourly estimates of wind energy pro-
duction, and thus relies on wind speed forecasts, particularly
around hub height at 100 m above ground level (Storm and Basu,
2010).

In addition, Bony et al. (2006) found that the polar regions,
which are generally stably stratified, are foreseen to warm 1.4–4
times faster than the global average in the period 1990–2090, but
a clear reason for this is unknown. Recently, Pithan and Mauritsen
(2014) evaluated the relative roles of the possible feedbacks
responsible for this amplification. Surprisingly, the ensemble of
the “Coupled Model Intercomparison Project-Phase 5” climate
models indicates that it is not the ice-albedo-feedback that dom-
inates, but temperature variations related to the surface energy
balance and the vertical temperature structure provide the largest
contribution to the amplification.

PHYSICAL PROCESSES
The complexity of the SBL originates partly from the multiplic-
ity of the processes involved. This section summarizes the main
processes, their current state of knowledge, and associated open
issues.

TURBULENCE
The nature of the atmospheric flow is characteristically turbu-
lent, in which eddies of different scales absorb energy from the
mean flow. These eddies break up into smaller eddies until they
dissipate because of the action of molecular viscosity. All eddy
motions of different length scales, from millimeters to the scale of
the boundary-layer height (of order 100 m for the SBL), transport
momentum, heat, humidity and contaminants. The turbulence
intensity is influenced by wind shear and buoyancy. During day-
time, the solar insolation heats the surface, and creates thermal
instability and thermals, i.e., buoyancy dominates the turbulent
kinetic energy budget. In contrast, in the SBL turbulence is sup-
pressed by buoyancy during calm nights, and is produced only by
wind shear. The net result is a precarious balance that is extremely
sensitive to changes in the wind profile and the mean temperature
profile.

Several turbulence regimes have been proposed. Although they
differ in formulations (in terms of governing variables and thresh-
old values), they all roughly distinguish between a so- called
“weakly stable boundary layer” (WSBL), for which turbulence

is the dominant transport process, and the “very stable bound-
ary layer” (VSBL), for which turbulence is relatively weak. Within
the WSBL, Nieuwstadt (1984) showed that scaling of local fluxes
with the local gradients of wind and potential temperature works
satisfactorily. Within the VSBL, a well-established scaling of tur-
bulence variables and thermodynamic profiles is missing (e.g.,
van de Wiel et al., 2012). Qualitatively, this regime is deter-
mined by waves, drainage flows, weak turbulence and other (sub-
)mesoscale motions, which are not necessarily of local nature.
Recently, Mahrt et al. (2012) pointed out that for near-calm
nocturnal conditions, significant turbulence is mainly generated
by short-term (minutes-long) accelerations of unknown origin.
Moreover, observations in the VBSL identified global and local
intermittency of turbulence, but a conclusive framework for this
phenomenon is still lacking (e.g., Nappo, 1991; van de Wiel et al.,
2003; Costa et al., 2011).

RADIATION
The radiation budget of the SBL addresses two aspects, i.e., the
net radiation balance at the surface (Q∗), and radiation diver-
gence within the atmosphere. Q∗ is governed by the down- and
upwelling longwave radiative fluxes. The first is largely deter-
mined from the atmospheric temperature and humidity profiles,
and the latter is dominated by the surface temperature. Internal
variability of these quantities may induce high-frequency har-
monics of Q∗ within the SBL. Moreover, cloud cover variations
and the evening transition trigger rapid Q∗ changes, which are
usually challenging to represent in models (van de Wiel et al.,
2003).

The energy transport by atmospheric radiation depends on
the capacity to absorb and radiate energy to and from different
atmospheric layers. This capacity is governed by the temperature
of the layers, and the concentration of gases that are sensitive to
interaction with radiation in the relevant range of wavelengths
(e.g., water vapor, carbon dioxide, methane). Vertical radiation
divergence is greater for larger vertical variations of temperature
and especially humidity. Since these variations are large close to
the surface, in particular for calm conditions, one may expect
substantial radiation divergence near the surface. Indeed, numer-
ous modeling studies reported such a divergence (Ha and Mahrt,
2003; Savijärvi, 2013). Field observations by Hoch et al. (2007)
and Steeneveld et al. (2010) (Figure 1) reported radiation diver-
gence values of several K/h in favorable conditions, particularly
during sunset. Numerical models were found to underestimate
substantially the radiative cooling for the case shown in Figure 1.
Future research should clarify whether this model bias is a result
from poor input to the radiation scheme, from the relatively
coarse model resolution, or from deficiencies in the formulation
of the radiation scheme (Wild et al., 2001; Rinke et al., 2012).

OROGRAPHICALLY INDUCED WAVES
Stratified flows allow for the propagation of gravity waves, gener-
ated for instance by hills and surface roughness transitions. Here,
we limit ourselves to orographically induced waves, whose role in
the SBL dynamics remains unclear (e.g., Brown et al., 2003). Since
NWP models require more drag than is explained by turbulence
observations, alternative processes that provide drag are worth to
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FIGURE 1 | Observed longwave heating rate in three atmospheric

layers for a series of clear calm days in May 2006, Wageningen, The

Netherlands.

examine. Gravity waves generate drag, which might influence the
dynamical evolution of the SBL. This mechanism is well under-
stood for large mountain ridges. However, the SBL is shallow, and
one can expect that small-scale orography can also significantly
influence the SBL flow through gravity wave propagation. Using
linear theory, Nappo (2002) indeed showed theoretically that the
magnitude of the wave drag and turbulent drag can be of the same
order for weak wind conditions.

Considering the complexity of real terrain, i.e., irregular hills,
an alternative approach to estimate wave drag for these condi-
tions is required. Figure S1 shows the estimated gravity wave
drag (GWD) for four contrasting nights during the “Cooperative
Atmospheric Surface Exchange Study 1999” (Steeneveld et al.,
2009). During all nights the estimated GWD is of the same order
of magnitude as the measured turbulent drag. During one night
(9/10 Oct) the GWD is substantially larger than the turbulent
drag for most of the night. In addition, the GWD is highly vari-
able throughout the night, and varies on a timescale that is close
to that of the observed global intermittent turbulence. Overall,
these results suggest that orographically induced GWD is a pos-
sible candidate to explain in fact that drag is too small in NWP
models.

The relevance of GWD is further illustrated by Burgering
(2014) who studied the sensitivity of a numerical model to the
application of GWD in the SBL on the large-scale flow develop-
ment. That study evaluated the model score for sea-level pressure
for an 8-day forecast over the Atlantic Ocean and Europe. When
a relatively simple approach to account for GWD is implemented
(Steeneveld et al., 2008; Lapworth, 2014), the root-mean- square
error reduces by ∼4 hPa (∼40%) over a large portion of Europe
for the studied cyclone. Also, the bias in the modeled cyclone core
pressure was reduced by ∼66%. Clearly, accounting for GWD in
the SBL substantially improves the model accuracy compared to
a run without this GWD.

KATABATIC WINDS
In general, the Earth’s surface orography is relatively complex.
Katabatic flows are ubiquitous features of SBLs on sloping

surfaces that are cooled by a radiation deficit, for example over
glaciers. In some areas, katabatic flows can govern the local
climate substantially. Katabatic flows are characterized by a pro-
nounced low-level jet and large near- surface temperature gra-
dient. Hence katabatic flows affect the surface fluxes of heat,
moisture and momentum, and consequently the ice mass bud-
get over glaciers, but also over Greenland and the polar regions.
The simplest model of katabatic flow represents a balance between
negative buoyancy due to the surface potential temperature
deficit, as the driving force, and turbulent drag that dampens the
flow. On relatively long glaciers and at high latitudes, the Coriolis
effect also influences katabatic flows, and induces a cross-slope
wind component (Stiperski et al., 2007). This cross-slope wind
is balanced by the Coriolis force and turbulent drag. Its vertical
scale is larger than the characteristic height of the low-level jet
of the down-slope component. The representation of katabatic
flows in numerical weather prediction models is a challenging
task (Grisogono et al., 2007; Jeričević et al., 2010).

COUPLING TO THE SURFACE
Considering the fact that turbulent fluxes may vanish in the sur-
face energy budget in calm conditions, the net radiation must
then balance the ground heat flux in order to conserve the sur-
face energy. Hence, it is evident that the land-surface coupling is
important and should be accurately represented in atmospheric
models, and its complexity should match the model complex-
ity of parameterizations for other processes. Since the coupling
with the land surface is an integral part of the SBL physics, studies
using prescribed temperature, particularly with prescribed fluxes
should be avoided. This aspect is further discussed in Holtslag
et al. (2007), who showed within a model intercomparison con-
text that model output variability is strongly reduced when the
atmospheric model is coupled to the land surface instead of
prescribing the surface temperature.

Weather and climate models require numerical values for
the heat conductivity, which are highly uncertain at the grid
scale, especially for snow-covered surfaces. Dutra et al. (2012)
quantified the EC-EARTH model performance and concluded
that a correct thermal insulation of the snowpack is essential to
improve the realism of the near-surface atmospheric temperature.
Moreover, their multilayer snow scheme outperforms the single-
layer scheme in deep snowpacks. Furthermore, an increased
snow thermal insulation removed a warm bias over snow-covered
regions during winter and spring; Cook et al. (2008) reported an
analogous sensitivity in which high vs. low insulation led to soil
cooling of up to 20 K in winter and 2-m temperature warming
of 6 K.

INTERACTIONS
Figure 2 summarizes the mentioned processes and their inter-
actions; herein positive (negative) feedbacks indicate a strength-
ening (weakening) of the process at the end of the arrow. First
we identify the pressure-gradient force, the Coriolis force, cloud
cover, free-flow stability, and deep-soil temperature as external
driving variables. Low cloud cover strengthens the net radia-
tive surface cooling, and thereby reduces the surface temperature
and builds up the stratification. While stratification builds up, it
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FIGURE 2 | Schematic overview of physical processes in the stable boundary layer over land, including their interactions and positive (____) and

negative feedbacks (-----). Gray lines indicate processes that can have either a positive or negative feedback, depending on the state of the boundary layer.

slowly erodes by radiation divergence which acts to overcome the
temperature contrast. On the other hand, an increased pressure
gradient raises the wind speed, and consequently the turbu-
lent mixing. A stronger mixing erodes the thermal stratification,
resulting in a smaller magnitude of the sensible heat flux in the
WSBL. Stronger mixing tends to deepen the SBL against the
free flow stability and Coriolis parameter. However, a contrast-
ing direction is found in the VSBL, where a reduced stratification
might result in an increased sensible heat flux. In both cases the
other surface energy budget components (soil heat flux and dew)
and the surface vegetation temperature will be modified. The
altered surface temperature establishes a new stratification, which
consequently feedbacks to the surface radiation balance.

Another feedback loop evolves via the proportionality between
GWD and wind speed, thereby strengthening the cyclone filling
rate, and thus reducing the pressure gradient and geostrophic
wind. Near the surface, GWD enhances the low-level jet wind
speed, providing additional downward turbulent mixing from
the jet, and thereby moderating the stratification again. In case
of sloping terrain, cold air pooling triggers pronounced local
temperature effects. Hence the SBL evolution is driven by a com-
plex interplay between a myriad of processes, which presents a
challenge for an accurate representation of the SBL in models.

ROLE OF SBL IN CLIMATE DEBATE
The ongoing climate change is mostly observed at night
and under stable conditions (Vose et al., 2005). The vertical

distribution of added heat is essential to an interpretation of the
2-m temperature. Recently, Steeneveld et al. (2011) and McNider
et al. (2012) performed a single-column model experiment in
which the impact of enhanced CO2 concentration on the 2-m
temperature was quantified for a wide range of geostrophic wind
speeds. They found that feedbacks in the SBL and the land sur-
face provide a 2-m temperature rise that is rather constant over
a relatively broad range of geostrophic wind speeds. Apparently,
the enhanced longwave downward radiation at the surface alters
the surface temperature, reducing the surface stability, which con-
sequently enhances the mixing in the whole SBL. Hence, vertical
redistribution of heat through the SBL may amplify or dampen
the 2-m temperature signal. This means that the 2-m temperature
as a climate diagnostic needs to be re-evaluated. As a contribution
to this discussion, Esau et al. (2012) hypothesized that the spa-
tiotemporal variability of climate change is partly related to the
effective heat capacity of the atmosphere, i.e., it is related to the
boundary-layer depth. They showed that the largest temperature
changes occur in areas with a relatively shallow boundary-layer
depth.

CONCLUSION
The SBL is governed by a myriad of physical processes. The
weakly-stable boundary layer is dominated by well-developed
turbulence that follows local scaling, and this regime can be
relatively well modeled and forecast. Within the very stable
regime, processes such as radiation divergence, orographic drag,
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land-surface coupling and (sub-)mesoscale motions can play a
major role in the evolution of the SBL. These processes have not
yet been fully understood and their relative impact has not yet
been quantified. To advance our knowledge of the SBL it is essen-
tial that atmospheric models represent these processes as purely as
possible. In terms of model development, this means that a strict
splitting of the processes should be preferred over the current
approach that lumps the net effect of many small-scale processes
within a single parameterization scheme, e.g., a stability function
in the boundary-layer scheme. This preferred approach will open
the way for a better understanding of the SBL and an improved
representation of it in NWP and climate models.
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Figure S1 | Modeled surface wave stress components (lines), and

measured turbulent stress (+) for a series of nights during the Cooperative

Atmospheric Surface Exchange Study 1999. In the header the

classification of van de Wiel et al. (2003) (Turb, Rad, Non) is indicated. (Ug ,

Vg ) identify the geostrophic wind for the simulation.
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